Multi-Granularity Attention Model for Group Recommendation
- URL: http://arxiv.org/abs/2308.04017v1
- Date: Tue, 8 Aug 2023 03:24:44 GMT
- Title: Multi-Granularity Attention Model for Group Recommendation
- Authors: Jianye Ji, Jiayan Pei, Shaochuan Lin, Taotao Zhou, Hengxu He, Jia Jia,
Ning Hu
- Abstract summary: Group recommendation provides personalized recommendations to a group of users based on their shared interests, preferences, and characteristics.
We present the Multi-Granularity Attention Model (MGAM) to uncover group members' latent preferences and mitigate recommendation noise.
Our method effectively reduces group recommendation noise across multiple granularities and comprehensively learns individual interests.
- Score: 7.764789596492022
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Group recommendation provides personalized recommendations to a group of
users based on their shared interests, preferences, and characteristics.
Current studies have explored different methods for integrating individual
preferences and making collective decisions that benefit the group as a whole.
However, most of them heavily rely on users with rich behavior and ignore
latent preferences of users with relatively sparse behavior, leading to
insufficient learning of individual interests. To address this challenge, we
present the Multi-Granularity Attention Model (MGAM), a novel approach that
utilizes multiple levels of granularity (i.e., subsets, groups, and supersets)
to uncover group members' latent preferences and mitigate recommendation noise.
Specially, we propose a Subset Preference Extraction module that enhances the
representation of users' latent subset-level preferences by incorporating their
previous interactions with items and utilizing a hierarchical mechanism.
Additionally, our method introduces a Group Preference Extraction module and a
Superset Preference Extraction module, which explore users' latent preferences
on two levels: the group-level, which maintains users' original preferences,
and the superset-level, which includes group-group exterior information. By
incorporating the subset-level embedding, group-level embedding, and
superset-level embedding, our proposed method effectively reduces group
recommendation noise across multiple granularities and comprehensively learns
individual interests. Extensive offline and online experiments have
demonstrated the superiority of our method in terms of performance.
Related papers
- ComPO: Community Preferences for Language Model Personalization [122.54846260663922]
ComPO is a method to personalize preference optimization in language models.
We collect and release ComPRed, a question answering dataset with community-level preferences from Reddit.
arXiv Detail & Related papers (2024-10-21T14:02:40Z) - AlignGroup: Learning and Aligning Group Consensus with Member Preferences for Group Recommendation [7.8148534870343225]
Group activities are important behaviors in human society, providing personalized recommendations for groups is referred to as the group recommendation task.
We propose a novel group recommendation method AlignGroup, which focuses on both group consensus and individual preferences of group members to infer the group decision-making.
arXiv Detail & Related papers (2024-09-04T10:03:09Z) - Enhancing Neural Subset Selection: Integrating Background Information into Set Representations [53.15923939406772]
We show that when the target value is conditioned on both the input set and subset, it is essential to incorporate an textitinvariant sufficient statistic of the superset into the subset of interest.
This ensures that the output value remains invariant to permutations of the subset and its corresponding superset, enabling identification of the specific superset from which the subset originated.
arXiv Detail & Related papers (2024-02-05T16:09:35Z) - ClusterSeq: Enhancing Sequential Recommender Systems with Clustering
based Meta-Learning [3.168790535780547]
ClusterSeq is a Meta-Learning Clustering-Based Sequential Recommender System.
It exploits dynamic information in the user sequence to enhance item prediction accuracy, even in the absence of side information.
Our proposed approach achieves a substantial improvement of 16-39% in Mean Reciprocal Rank (MRR)
arXiv Detail & Related papers (2023-07-25T18:53:24Z) - Double-Scale Self-Supervised Hypergraph Learning for Group
Recommendation [35.841350982832545]
Group recommendation suffers seriously from the problem of data sparsity.
We propose a self-supervised hypergraph learning framework for group recommendation to achieve two goals.
arXiv Detail & Related papers (2021-09-09T12:19:49Z) - Overcoming Data Sparsity in Group Recommendation [52.00998276970403]
Group recommender systems should be able to accurately learn not only users' personal preferences but also preference aggregation strategy.
In this paper, we take Bipartite Graphding Model (BGEM), the self-attention mechanism and Graph Convolutional Networks (GCNs) as basic building blocks to learn group and user representations in a unified way.
arXiv Detail & Related papers (2020-10-02T07:11:19Z) - PinnerSage: Multi-Modal User Embedding Framework for Recommendations at
Pinterest [54.56236567783225]
PinnerSage is an end-to-end recommender system that represents each user via multi-modal embeddings.
We conduct several offline and online A/B experiments to show that our method significantly outperforms single embedding methods.
arXiv Detail & Related papers (2020-07-07T17:13:20Z) - Deep Learning feature selection to unhide demographic recommender
systems factors [63.732639864601914]
The matrix factorization model generates factors which do not incorporate semantic knowledge.
DeepUnHide is able to extract demographic information from the users and items factors in collaborative filtering recommender systems.
arXiv Detail & Related papers (2020-06-17T17:36:48Z) - GroupIM: A Mutual Information Maximization Framework for Neural Group
Recommendation [24.677145454396822]
We study the problem of making item recommendations to ephemeral groups, which comprise users with limited or no historical activities together.
Existing studies target persistent groups with substantial activity history, while ephemeral groups lack historical interactions.
We propose data-driven regularization strategies to exploit both the preference covariance amongst users who are in the same group, as well as the contextual relevance of users' individual preferences to each group.
arXiv Detail & Related papers (2020-06-05T23:18:19Z) - Sequential Recommendation with Self-Attentive Multi-Adversarial Network [101.25533520688654]
We present a Multi-Factor Generative Adversarial Network (MFGAN) for explicitly modeling the effect of context information on sequential recommendation.
Our framework is flexible to incorporate multiple kinds of factor information, and is able to trace how each factor contributes to the recommendation decision over time.
arXiv Detail & Related papers (2020-05-21T12:28:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.