A Comprehensive Assessment Benchmark for Rigorously Evaluating Deep Learning Image Classifiers
- URL: http://arxiv.org/abs/2308.04137v2
- Date: Sat, 07 Dec 2024 13:38:12 GMT
- Title: A Comprehensive Assessment Benchmark for Rigorously Evaluating Deep Learning Image Classifiers
- Authors: Michael W. Spratling,
- Abstract summary: This article advocates bench-marking performance using a wide range of different types of data.
It is found that current deep neural networks, including those trained with methods that are believed to produce state-of-the-art robustness, are extremely vulnerable to making mistakes on certain types of data.
- Score: 4.768207906634657
- License:
- Abstract: Reliable and robust evaluation methods are a necessary first step towards developing machine learning models that are themselves robust and reliable. Unfortunately, current evaluation protocols typically used to assess classifiers fail to comprehensively evaluate performance as they tend to rely on limited types of test data, and ignore others. For example, using the standard test data fails to evaluate the predictions made by the classifier to samples from classes it was not trained on. On the other hand, testing with data containing samples from unknown classes fails to evaluate how well the classifier can predict the labels for known classes. This article advocates bench-marking performance using a wide range of different types of data and using a single metric that can be applied to all such data types to produce a consistent evaluation of performance. Using such a benchmark it is found that current deep neural networks, including those trained with methods that are believed to produce state-of-the-art robustness, are extremely vulnerable to making mistakes on certain types of data. This means that such models will be unreliable in real-world scenarios where they may encounter data from many different domains, and that they are insecure as they can easily be fooled into making the wrong decisions. It is hoped that these results will motivate the wider adoption of more comprehensive testing methods that will, in turn, lead to the development of more robust machine learning methods in the future. Code is available at: https://codeberg.org/mwspratling/RobustnessEvaluation
Related papers
- Fantastic DNN Classifiers and How to Identify them without Data [0.685316573653194]
We show that the quality of a trained DNN classifier can be assessed without any example data.
We have developed two metrics: one using the features of the prototypes and the other using adversarial examples corresponding to each prototype.
Empirical evaluations show that accuracy obtained from test examples is directly proportional to quality measures obtained from the proposed metrics.
arXiv Detail & Related papers (2023-05-24T20:54:48Z) - Revisiting Long-tailed Image Classification: Survey and Benchmarks with
New Evaluation Metrics [88.39382177059747]
A corpus of metrics is designed for measuring the accuracy, robustness, and bounds of algorithms for learning with long-tailed distribution.
Based on our benchmarks, we re-evaluate the performance of existing methods on CIFAR10 and CIFAR100 datasets.
arXiv Detail & Related papers (2023-02-03T02:40:54Z) - A Call to Reflect on Evaluation Practices for Failure Detection in Image
Classification [0.491574468325115]
We present a large-scale empirical study for the first time enabling benchmarking confidence scoring functions.
The revelation of a simple softmax response baseline as the overall best performing method underlines the drastic shortcomings of current evaluation.
arXiv Detail & Related papers (2022-11-28T12:25:27Z) - Review of Methods for Handling Class-Imbalanced in Classification
Problems [0.0]
In some cases, one class contains the majority of examples while the other, which is frequently the more important class, is nevertheless represented by a smaller proportion of examples.
The article examines the most widely used methods for addressing the problem of learning with a class imbalance, including data-level, algorithm-level, hybrid, cost-sensitive learning, and deep learning.
arXiv Detail & Related papers (2022-11-10T10:07:10Z) - Classification of datasets with imputed missing values: does imputation
quality matter? [2.7646249774183]
Classifying samples in incomplete datasets is non-trivial.
We demonstrate how the commonly used measures for assessing quality are flawed.
We propose a new class of discrepancy scores which focus on how well the method recreates the overall distribution of the data.
arXiv Detail & Related papers (2022-06-16T22:58:03Z) - Certifying Data-Bias Robustness in Linear Regression [12.00314910031517]
We present a technique for certifying whether linear regression models are pointwise-robust to label bias in a training dataset.
We show how to solve this problem exactly for individual test points, and provide an approximate but more scalable method.
We also unearth gaps in bias-robustness, such as high levels of non-robustness for certain bias assumptions on some datasets.
arXiv Detail & Related papers (2022-06-07T20:47:07Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
We propose a novel framework to efficiently test a machine learning model using only a small amount of labeled test data.
The idea is to estimate the metrics of interest for a model-under-test using Bayesian neural network (BNN)
arXiv Detail & Related papers (2021-04-11T12:14:04Z) - Understanding Classifier Mistakes with Generative Models [88.20470690631372]
Deep neural networks are effective on supervised learning tasks, but have been shown to be brittle.
In this paper, we leverage generative models to identify and characterize instances where classifiers fail to generalize.
Our approach is agnostic to class labels from the training set which makes it applicable to models trained in a semi-supervised way.
arXiv Detail & Related papers (2020-10-05T22:13:21Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
A popular transductive inference technique for few-shot metric-based approaches, is to update the prototype of each class with the mean of the most confident query examples.
We propose to meta-learn the confidence for each query sample, to assign optimal weights to unlabeled queries.
We validate our few-shot learning model with meta-learned confidence on four benchmark datasets.
arXiv Detail & Related papers (2020-02-27T10:22:17Z) - Learning with Out-of-Distribution Data for Audio Classification [60.48251022280506]
We show that detecting and relabelling certain OOD instances, rather than discarding them, can have a positive effect on learning.
The proposed method is shown to improve the performance of convolutional neural networks by a significant margin.
arXiv Detail & Related papers (2020-02-11T21:08:06Z) - Certified Robustness to Label-Flipping Attacks via Randomized Smoothing [105.91827623768724]
Machine learning algorithms are susceptible to data poisoning attacks.
We present a unifying view of randomized smoothing over arbitrary functions.
We propose a new strategy for building classifiers that are pointwise-certifiably robust to general data poisoning attacks.
arXiv Detail & Related papers (2020-02-07T21:28:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.