Quantum limit to subdiffraction incoherent optical imaging. III. Numerical analysis
- URL: http://arxiv.org/abs/2308.04317v2
- Date: Fri, 29 Mar 2024 07:37:47 GMT
- Title: Quantum limit to subdiffraction incoherent optical imaging. III. Numerical analysis
- Authors: Xiao-Jie Tan, Mankei Tsang,
- Abstract summary: This work performs a numerical analysis of the quantum bound to verify that the law works well for nonzero object sizes in reality.
We also use the numerical bounds to study the optimality of a measurement called spatial-mode demultiplexing or SPADE.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To investigate the fundamental limit to far-field incoherent imaging, the prequels to this work [M. Tsang, Phys. Rev. A 99, 012305 (2019); 104, 052411 (2021)] have studied a quantum lower bound on the error of estimating an object moment and proved a scaling law for the bound with respect to the object size. As the scaling law was proved only in the asymptotic limit of vanishing object size, this work performs a numerical analysis of the quantum bound to verify that the law works well for nonzero object sizes in reality. We also use the numerical bounds to study the optimality of a measurement called spatial-mode demultiplexing or SPADE, showing that SPADE not only follows the scaling but is also numerically close to being optimal, at least for low-order moments.
Related papers
- Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - QND measurements of photon number in monolithic microcavities [0.0]
We revisit the idea of quantum nondemolition measurement (QND) of optical quanta.
We show that the monolithic microcavities enable QND measurement of number of quanta in a weak signal field.
We show that the best modern monolithic microcavities allow achieving the measurement imprecision several times better than the standard quantum limit.
arXiv Detail & Related papers (2021-11-29T17:00:15Z) - Tight Exponential Analysis for Smoothing the Max-Relative Entropy and
for Quantum Privacy Amplification [56.61325554836984]
The max-relative entropy together with its smoothed version is a basic tool in quantum information theory.
We derive the exact exponent for the decay of the small modification of the quantum state in smoothing the max-relative entropy based on purified distance.
arXiv Detail & Related papers (2021-11-01T16:35:41Z) - Bosonic field digitization for quantum computers [62.997667081978825]
We address the representation of lattice bosonic fields in a discretized field amplitude basis.
We develop methods to predict error scaling and present efficient qubit implementation strategies.
arXiv Detail & Related papers (2021-08-24T15:30:04Z) - Photon-mediated Stroboscopic Quantum Simulation of a $\mathbb{Z}_{2}$
Lattice Gauge Theory [58.720142291102135]
Quantum simulation of lattice gauge theories (LGTs) aims at tackling non-perturbative particle and condensed matter physics.
One of the current challenges is to go beyond 1+1 dimensions, where four-body (plaquette) interactions, not contained naturally in quantum simulating devices, appear.
We show how to prepare the ground state and measure Wilson loops using state-of-the-art techniques in atomic physics.
arXiv Detail & Related papers (2021-07-27T18:10:08Z) - Quantum metrology of two-photon absorption [0.0]
Two-photon absorption (TPA) is of fundamental importance in super-resolution imaging and spectroscopy.
We establish the metrological properties of nonclassical squeezed light sources for precision measurements of TPA cross sections.
We find that there is no fundamental limit for the precision achievable with squeezed states in the limit of very small cross sections.
arXiv Detail & Related papers (2021-05-04T15:21:15Z) - Quantum limit to subdiffraction incoherent optical imaging. II. A
parametric-submodel approach [0.0]
In a previous paper, I proposed a quantum limit to the estimation of object moments in subdiffraction incoherent optical imaging.
In this paper, I prove the quantum limit rigorously by infinite-dimensional analysis.
I also prove that the measurement method of spatial-mode demultiplexing with just one or two modes is able to achieve the quantum limit.
arXiv Detail & Related papers (2020-10-07T16:55:48Z) - Achieving Heisenberg scaling with maximally entangled states: an
analytic upper bound for the attainable root mean square error [2.0305676256390934]
We explore the possibility of performing Heisenberg limited quantum metrology of a phase, without any prior, by employing only maximally entangled states.
The analysed protocol is non-adaptive and requires in principle (for distinguishable probes) only separable measurements.
arXiv Detail & Related papers (2020-07-06T18:27:38Z) - The role of boundary conditions in quantum computations of scattering
observables [58.720142291102135]
Quantum computing may offer the opportunity to simulate strongly-interacting field theories, such as quantum chromodynamics, with physical time evolution.
As with present-day calculations, quantum computation strategies still require the restriction to a finite system size.
We quantify the volume effects for various $1+1$D Minkowski-signature quantities and show that these can be a significant source of systematic uncertainty.
arXiv Detail & Related papers (2020-07-01T17:43:11Z) - Non-Markovian effect on quantum optical metrology under dissipative
environment [1.6058099298620423]
Non-Markovian effects are shown to be effective in performing quantum optical metrology under locally dissipative environments.
Our work provides a recipe to realize ultrasensitive measurements in the presence of noise by utilizing non-Markovian effects.
arXiv Detail & Related papers (2020-02-09T14:50:54Z) - Probing chiral edge dynamics and bulk topology of a synthetic Hall
system [52.77024349608834]
Quantum Hall systems are characterized by the quantization of the Hall conductance -- a bulk property rooted in the topological structure of the underlying quantum states.
Here, we realize a quantum Hall system using ultracold dysprosium atoms, in a two-dimensional geometry formed by one spatial dimension.
We demonstrate that the large number of magnetic sublevels leads to distinct bulk and edge behaviors.
arXiv Detail & Related papers (2020-01-06T16:59:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.