Squeezing the quantum noise of a gravitational-wave detector below the standard quantum limit
- URL: http://arxiv.org/abs/2404.14569v3
- Date: Wed, 16 Oct 2024 19:09:54 GMT
- Title: Squeezing the quantum noise of a gravitational-wave detector below the standard quantum limit
- Authors: Wenxuan Jia, Victoria Xu, Kevin Kuns, Masayuki Nakano, Lisa Barsotti, Matthew Evans, Nergis Mavalvala, Rich Abbott, Ibrahim Abouelfettouh, Rana Adhikari, Alena Ananyeva, Stephen Appert, Koji Arai, Naoki Aritomi, Stuart Aston, Matthew Ball, Stefan Ballmer, David Barker, Beverly Berger, Joseph Betzwieser, Dripta Bhattacharjee, Garilynn Billingsley, Nina Bode, Edgard Bonilla, Vladimir Bossilkov, Adam Branch, Aidan Brooks, Daniel Brown, John Bryant, Craig Cahillane, Huy-tuong Cao, Elenna Capote, Yanbei Chen, Filiberto Clara, Josh Collins, Camilla Compton, Robert Cottingham, Dennis Coyne, Ryan Crouch, Janos Csizmazia, Torrey Cullen, Louis Dartez, Nicholas Demos, Ezekiel Dohmen, Jenne Driggers, Sheila Dwyer, Anamaria Effler, Aldo Ejlli, Todd Etzel, Jon Feicht, Raymond Frey, William Frischhertz, Peter Fritschel, Valery Frolov, Paul Fulda, Michael Fyffe, Dhruva Ganapathy, Bubba Gateley, Joe Giaime, Dwayne Giardina, Jane Glanzer, Evan Goetz, Aaron Jones, Slawomir Gras, Corey Gray, Don Griffith, Hartmut Grote, Tyler Guidry, Evan Hall, Jonathan Hanks, Joe Hanson, Matthew Heintze, Adrian Helmling-cornell, Hsiang-yu Huang, Yuki Inoue, Alasdair James, Austin Jennings, Srinath Karat, Marie Kasprzack, Keita Kawabe, Nutsinee Kijbunchoo, Jeffrey Kissel, Antonios Kontos, Rahul Kumar, Michael Landry, Brian Lantz, Michael Laxen, Kyung-ha Lee, Madeline Lesovsky, Francisco Llamas, Marc Lormand, Hudsonalexander Loughlin, Ronaldas Macas, Myron Macinnis, Camille Makarem, Benjaminrobert Mannix, Georgia Mansell, Rodica Martin, Nyath Maxwell, Garrett Mccarrol, Richard Mccarthy, David Mcclelland, Scott Mccormick, Lee Mcculler, Terry Mcrae, Fernando Mera, Edmond Merilh, Fabian Meylahn, Richard Mittleman, Dan Moraru, Gerardo Moreno, Matthew Mould, Adam Mullavey, Timothy Nelson, Ansel Neunzert, Jason Oberling, Timothy Ohanlon, Charles Osthelder, David Ottaway, Harry Overmier, William Parker, Arnaud Pele, Huyen Pham, Marc Pirello, Volker Quetschke, Karla Ramirez, Jonathan Reyes, Jonathan Richardson, Mitchell Robinson, Jameson Rollins, Janeen Romie, Michael Ross, Travis Sadecki, Anthony Sanchez, Eduardo Sanchez, Luis Sanchez, Richard Savage, Dean Schaetzl, Mitchell Schiworski, Roman Schnabel, Robert Schofield, Eyal Schwartz, Danny Sellers, Thomas Shaffer, Ryan Short, Daniel Sigg, Bram Slagmolen, Siddharth Soni, Ling Sun, David Tanner, Michael Thomas, Patrick Thomas, Keith Thorne, Calum Torrie, Gary Traylor, Gabriele Vajente, Jordan Vanosky, Alberto Vecchio, Peter Veitch, Ajay Vibhute, Erik Vonreis, Jim Warner, Betsy Weaver, Rainer Weiss, Chris Whittle, Benno Willke, Christopher Wipf, Hiro Yamamoto, Haocun Yu, Liyuan Zhang, Michael Zucker,
- Abstract summary: We show how the LIGO A+ upgrade reduced the detectors' quantum noise below the Standard Quantum Limit by up to 3 dB while achieving a broadband sensitivity improvement.
The Heisenberg uncertainty principle dictates that the position and momentum of an object cannot both be precisely measured.
- Score: 21.757974626255706
- License:
- Abstract: Precision measurements of space and time, like those made by the detectors of the Laser Interferometer Gravitational-wave Observatory (LIGO), are often confronted with fundamental limitations imposed by quantum mechanics. The Heisenberg uncertainty principle dictates that the position and momentum of an object cannot both be precisely measured, giving rise to an apparent limitation called the Standard Quantum Limit (SQL). Reducing quantum noise below the SQL in gravitational-wave detectors, where photons are used to continuously measure the positions of freely falling mirrors, has been an active area of research for decades. Here we show how the LIGO A+ upgrade reduced the detectors' quantum noise below the SQL by up to 3 dB while achieving a broadband sensitivity improvement, more than two decades after this possibility was first presented.
Related papers
- Table-top nanodiamond interferometer enabling quantum gravity tests [34.82692226532414]
We present a feasibility study for a table-top nanodiamond-based interferometer.
By relying on quantum superpositions of steady massive objects our interferometer may allow exploiting just small-range electromagnetic fields.
arXiv Detail & Related papers (2024-05-31T17:20:59Z) - Photon Counting Interferometry to Detect Geontropic Space-Time Fluctuations with GQuEST [31.114245664719455]
The GQuEST experiment uses tabletop-scale Michelson laser interferometers to probe for fluctuations in space-time.
We present a practicable interferometer design featuring a novel photon counting readout method that provides unprecedented sensitivity.
arXiv Detail & Related papers (2024-04-11T07:38:36Z) - Finite Pulse-Time Effects in Long-Baseline Quantum Clock Interferometry [45.73541813564926]
We study the interplay of the quantum center-of-mass $-$ that can become delocalized $-$ together with the internal clock transitions.
We show at the example of a Gaussian laser beam that the proposed quantum-clock interferometers are stable against perturbations from varying optical fields.
arXiv Detail & Related papers (2023-09-25T18:00:03Z) - Measuring the Loschmidt amplitude for finite-energy properties of the
Fermi-Hubbard model on an ion-trap quantum computer [27.84599956781646]
We study the operation of a quantum-classical time-series algorithm on a present-day quantum computer.
Specifically, we measure the Loschmidt amplitude for the Fermi-Hubbard model on a $16$-site ladder geometry (32 orbitals) on the Quantinuum H2-1 trapped-ion device.
We numerically analyze the influence of noise on the full operation of the quantum-classical algorithm by measuring expectation values of local observables at finite energies.
arXiv Detail & Related papers (2023-09-19T11:59:36Z) - Integrated Quantum Optical Phase Sensor [48.7576911714538]
We present a photonic integrated circuit fabricated in thin-film lithium niobate.
We use the second-order nonlinearity to produce a squeezed state at the same frequency as the pump light and realize circuit control and sensing with electro-optics.
We anticipate that on-chip photonic systems like this, which operate with low power and integrate all of the needed functionality on a single die, will open new opportunities for quantum optical sensing.
arXiv Detail & Related papers (2022-12-19T18:46:33Z) - Modeling Quantum Enhanced Sensing on a Quantum Computer [0.0]
Quantum computers allow for direct simulation of the quantum interference and entanglement used in modern interferometry experiments.
We present two quantum circuit models that demonstrate the role of quantum mechanics and entanglement in modern precision sensors.
arXiv Detail & Related papers (2022-09-16T22:29:16Z) - Heisenberg-Limited Waveform Estimation with Solid-State Spins in Diamond [15.419555338671772]
Heisenberg limit in arbitrary waveform estimation is quite different with parameter estimation.
It is still a non-trivial challenge to generate a large number of exotic quantum entangled states to achieve this quantum limit.
This work provides an essential step towards realizing quantum-enhanced structure recognition in a continuous space and time.
arXiv Detail & Related papers (2021-05-13T01:52:18Z) - Quantum limits for stationary force sensing [0.0]
State-of-the-art sensors have reached the sensitivity where the quantum noise of the meter is significant or even dominant.
In particular, the sensitivity of the best optomechanical devices has reached the Standard Quantum Limit.
Here we develop a unified theory of these two fundamental limits by deriving the general sensitivity constraint.
arXiv Detail & Related papers (2020-11-30T11:58:00Z) - Coherently driven photonic de Broglie Sagnac interferometer [0.0]
Photonic de Broglie waves (PBW) have been the key feature of such a gain in quantum metrology.
New type of PBW is presented for its potential application of a modified Sagnac interferometer.
arXiv Detail & Related papers (2020-02-05T12:32:33Z) - Quantum correlations between the light and kilogram-mass mirrors of LIGO [3.8821562099592706]
We experimentally prove the theoretical prediction that this type of quantum correlation is naturally produced in the Laser Interferometer Gravitational-wave Observatory (LIGO)
Our measurements show that the quantum mechanical uncertainties in the phases of the 200 kW laser beams and in the positions of the 40 kg mirrors yield a joint quantum uncertainty a factor of 1.4 (3dB) below the standard quantum limit.
We anticipate that quantum correlations will not only improve gravitational wave (GW) but all types of measurements in future.
arXiv Detail & Related papers (2020-02-04T19:52:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.