Dual Governance: The intersection of centralized regulation and
crowdsourced safety mechanisms for Generative AI
- URL: http://arxiv.org/abs/2308.04448v1
- Date: Wed, 2 Aug 2023 23:25:21 GMT
- Title: Dual Governance: The intersection of centralized regulation and
crowdsourced safety mechanisms for Generative AI
- Authors: Avijit Ghosh, Dhanya Lakshmi
- Abstract summary: Generative Artificial Intelligence (AI) has seen mainstream adoption lately, especially in the form of consumer-facing, open-ended, text and image generating models.
The potential for generative AI to displace human creativity and livelihoods has also been under intense scrutiny.
Existing and proposed centralized regulations by governments to rein in AI face criticisms such as not having sufficient clarity or uniformity.
Decentralized protections via crowdsourced safety tools and mechanisms are a potential alternative.
- Score: 1.2691047660244335
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative Artificial Intelligence (AI) has seen mainstream adoption lately,
especially in the form of consumer-facing, open-ended, text and image
generating models. However, the use of such systems raises significant ethical
and safety concerns, including privacy violations, misinformation and
intellectual property theft. The potential for generative AI to displace human
creativity and livelihoods has also been under intense scrutiny. To mitigate
these risks, there is an urgent need of policies and regulations responsible
and ethical development in the field of generative AI. Existing and proposed
centralized regulations by governments to rein in AI face criticisms such as
not having sufficient clarity or uniformity, lack of interoperability across
lines of jurisdictions, restricting innovation, and hindering free market
competition. Decentralized protections via crowdsourced safety tools and
mechanisms are a potential alternative. However, they have clear deficiencies
in terms of lack of adequacy of oversight and difficulty of enforcement of
ethical and safety standards, and are thus not enough by themselves as a
regulation mechanism. We propose a marriage of these two strategies via a
framework we call Dual Governance. This framework proposes a cooperative
synergy between centralized government regulations in a U.S. specific context
and safety mechanisms developed by the community to protect stakeholders from
the harms of generative AI. By implementing the Dual Governance framework, we
posit that innovation and creativity can be promoted while ensuring safe and
ethical deployment of generative AI.
Related papers
- How Could Generative AI Support Compliance with the EU AI Act? A Review for Safe Automated Driving Perception [4.075971633195745]
Deep Neural Networks (DNNs) have become central for the perception functions of autonomous vehicles.
The European Union (EU) Artificial Intelligence (AI) Act aims to address these challenges by establishing stringent norms and standards for AI systems.
This review paper summarizes the requirements arising from the EU AI Act regarding DNN-based perception systems and systematically categorizes existing generative AI applications in AD.
arXiv Detail & Related papers (2024-08-30T12:01:06Z) - AI Risk Management Should Incorporate Both Safety and Security [185.68738503122114]
We argue that stakeholders in AI risk management should be aware of the nuances, synergies, and interplay between safety and security.
We introduce a unified reference framework to clarify the differences and interplay between AI safety and AI security.
arXiv Detail & Related papers (2024-05-29T21:00:47Z) - The Dual Imperative: Innovation and Regulation in the AI Era [0.0]
This article addresses the societal costs associated with the lack of regulation in Artificial Intelligence.
Over fifty years of AI research, have propelled AI into the mainstream, promising significant economic benefits.
The discourse is polarized between accelerationists, advocating for unfettered technological advancement, and doomers, calling for a slowdown to prevent dystopian outcomes.
arXiv Detail & Related papers (2024-05-23T08:26:25Z) - A Safe Harbor for AI Evaluation and Red Teaming [124.89885800509505]
Some researchers fear that conducting such research or releasing their findings will result in account suspensions or legal reprisal.
We propose that major AI developers commit to providing a legal and technical safe harbor.
We believe these commitments are a necessary step towards more inclusive and unimpeded community efforts to tackle the risks of generative AI.
arXiv Detail & Related papers (2024-03-07T20:55:08Z) - The risks of risk-based AI regulation: taking liability seriously [46.90451304069951]
The development and regulation of AI seems to have reached a critical stage.
Some experts are calling for a moratorium on the training of AI systems more powerful than GPT-4.
This paper analyses the most advanced legal proposal, the European Union's AI Act.
arXiv Detail & Related papers (2023-11-03T12:51:37Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
We describe risks that include large-scale social harms, malicious uses, and irreversible loss of human control over autonomous AI systems.
There is a lack of consensus about how exactly such risks arise, and how to manage them.
Present governance initiatives lack the mechanisms and institutions to prevent misuse and recklessness, and barely address autonomous systems.
arXiv Detail & Related papers (2023-10-26T17:59:06Z) - Frontier AI Regulation: Managing Emerging Risks to Public Safety [15.85618115026625]
"Frontier AI" models could possess dangerous capabilities sufficient to pose severe risks to public safety.
Industry self-regulation is an important first step.
We propose an initial set of safety standards.
arXiv Detail & Related papers (2023-07-06T17:03:25Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
This interdisciplinary position paper considers various concerns surrounding fairness and discrimination in AI, and discusses how AI regulations address them.
We first look at AI and fairness through the lenses of law, (AI) industry, sociotechnology, and (moral) philosophy, and present various perspectives.
We identify and propose the roles AI Regulation should take to make the endeavor of the AI Act a success in terms of AI fairness concerns.
arXiv Detail & Related papers (2022-06-08T12:32:08Z) - A Decentralized Approach Towards Responsible AI in Social Ecosystems [0.0]
We present a framework that provides computational facilities for parties in a social ecosystem to produce the desired AI behaviors.
We analyze AI systems at the architecture level and propose two cryptographic mechanisms for an AI system architecture.
We argue the case that a decentralized approach is the most promising path towards Responsible AI from both the computer science and social science perspectives.
arXiv Detail & Related papers (2021-02-12T06:33:42Z) - Toward Trustworthy AI Development: Mechanisms for Supporting Verifiable
Claims [59.64274607533249]
AI developers need to make verifiable claims to which they can be held accountable.
This report suggests various steps that different stakeholders can take to improve the verifiability of claims made about AI systems.
We analyze ten mechanisms for this purpose--spanning institutions, software, and hardware--and make recommendations aimed at implementing, exploring, or improving those mechanisms.
arXiv Detail & Related papers (2020-04-15T17:15:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.