MCTS guided Genetic Algorithm for optimization of neural network weights
- URL: http://arxiv.org/abs/2308.04459v1
- Date: Mon, 7 Aug 2023 18:11:51 GMT
- Title: MCTS guided Genetic Algorithm for optimization of neural network weights
- Authors: Akshay Hebbar
- Abstract summary: We investigate the possibility of applying a search strategy to genetic algorithms to explore the entire genetic tree structure.
We will combine these approaches to optimally search for the best result generated with genetic algorithms.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In this research, we investigate the possibility of applying a search
strategy to genetic algorithms to explore the entire genetic tree structure.
Several methods aid in performing tree searches; however, simpler algorithms
such as breadth-first, depth-first, and iterative techniques are
computation-heavy and often result in a long execution time. Adversarial
techniques are often the preferred mechanism when performing a probabilistic
search, yielding optimal results more quickly. The problem we are trying to
tackle in this paper is the optimization of neural networks using genetic
algorithms. Genetic algorithms (GA) form a tree of possible states and provide
a mechanism for rewards via the fitness function. Monte Carlo Tree Search
(MCTS) has proven to be an effective tree search strategy given states and
rewards; therefore, we will combine these approaches to optimally search for
the best result generated with genetic algorithms.
Related papers
- Recombination vs Stochasticity: A Comparative Study on the Maximum Clique Problem [0.393259574660092]
The maximum clique problem (MCP) is a fundamental problem in graph theory and computational complexity.
Various meta-heuristics have been used to approximate the MCP, including genetic and memetic algorithms, ant colony algorithms, greedy algorithms, Tabu algorithms, and simulated annealing.
Our results indicate that Monte Carlo algorithms, which employ random searches to generate subgraphs, often surpass genetic algorithms in both speed and capability.
arXiv Detail & Related papers (2024-09-26T12:50:00Z) - LiteSearch: Efficacious Tree Search for LLM [70.29796112457662]
This study introduces a novel guided tree search algorithm with dynamic node selection and node-level exploration budget.
Experiments conducted on the GSM8K and TabMWP datasets demonstrate that our approach enjoys significantly lower computational costs compared to baseline methods.
arXiv Detail & Related papers (2024-06-29T05:14:04Z) - Efficient Non-Parametric Optimizer Search for Diverse Tasks [93.64739408827604]
We present the first efficient scalable and general framework that can directly search on the tasks of interest.
Inspired by the innate tree structure of the underlying math expressions, we re-arrange the spaces into a super-tree.
We adopt an adaptation of the Monte Carlo method to tree search, equipped with rejection sampling and equivalent- form detection.
arXiv Detail & Related papers (2022-09-27T17:51:31Z) - Provably Faster Algorithms for Bilevel Optimization [54.83583213812667]
Bilevel optimization has been widely applied in many important machine learning applications.
We propose two new algorithms for bilevel optimization.
We show that both algorithms achieve the complexity of $mathcalO(epsilon-1.5)$, which outperforms all existing algorithms by the order of magnitude.
arXiv Detail & Related papers (2021-06-08T21:05:30Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
This paper investigates the classical integer least-squares problem which estimates signals integer from linear models.
The problem is NP-hard and often arises in diverse applications such as signal processing, bioinformatics, communications and machine learning.
We propose a general hyper-accelerated tree search (HATS) algorithm by employing a deep neural network to estimate the optimal estimation for the underlying simplified memory-bounded A* algorithm.
arXiv Detail & Related papers (2021-01-07T08:00:02Z) - Efficient Computation of Expectations under Spanning Tree Distributions [67.71280539312536]
We propose unified algorithms for the important cases of first-order expectations and second-order expectations in edge-factored, non-projective spanning-tree models.
Our algorithms exploit a fundamental connection between gradients and expectations, which allows us to derive efficient algorithms.
arXiv Detail & Related papers (2020-08-29T14:58:26Z) - MurTree: Optimal Classification Trees via Dynamic Programming and Search [61.817059565926336]
We present a novel algorithm for learning optimal classification trees based on dynamic programming and search.
Our approach uses only a fraction of the time required by the state-of-the-art and can handle datasets with tens of thousands of instances.
arXiv Detail & Related papers (2020-07-24T17:06:55Z) - A Heuristic Based on Randomized Greedy Algorithms for the Clustered
Shortest-Path Tree Problem [2.099922236065961]
This paper introduces a new algorithm that combines the major features of RGAs and Shortest Path Tree Algorithm (SPTA) to deal with the Clustered Shortest-Path Tree Problem (CluSPT)
To evaluate the performance of the proposed algorithm, Euclidean benchmarks are selected.
arXiv Detail & Related papers (2020-05-05T08:34:58Z) - Parameterized Complexity Analysis of Randomized Search Heuristics [16.759797540118665]
This chapter compiles a number of results that apply the theory of parameterized running-time analysis of randomized algorithms.
We outline the main results and proof techniques for a collection of randomized searchs tasked to solve NP-hard optimization problems.
arXiv Detail & Related papers (2020-01-15T03:43:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.