論文の概要: Sci-CoT: Leveraging Large Language Models for Enhanced Knowledge
Distillation in Small Models for Scientific QA
- arxiv url: http://arxiv.org/abs/2308.04679v1
- Date: Wed, 9 Aug 2023 03:18:07 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-10 15:21:59.507030
- Title: Sci-CoT: Leveraging Large Language Models for Enhanced Knowledge
Distillation in Small Models for Scientific QA
- Title(参考訳): Sci-CoT:科学QAのための小規模モデルにおける知識蒸留強化のための大規模言語モデルの活用
- Authors: Yuhan Ma and Haiqi Jiang and Chenyou Fan
- Abstract要約: 大規模言語モデル(LLM)は、幅広い下流タスクで優れたパフォーマンスを示している。
本稿では2段階のフレームワークであるSci-CoTを提案する。
我々の8000万のパラメータモデルは、いくつかのショット設定の下でARC-EasyデータセットにおけるBLOOM-176Bの性能を上回ることができる。
- 参考スコア(独自算出の注目度): 5.117094291273979
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have shown outstanding performance across wide
range of downstream tasks. This competency is attributed to their substantial
parameter size and pre-training on extensive corpus. Moreover, LLMs have
exhibited enhanced reasoning capabilities in tackling complex reasoning tasks,
owing to the utilization of a method named ``Chain-of-Thought (CoT)
prompting''. This method is designed to generate intermediate reasoning steps
that guide the inference of the final answer. However, it is essential to
highlight that these advanced reasoning abilities appear to emerge in models
with a minimum of 10 billion parameters, thereby limiting its efficacy in
situations where computational resources are constrained. In this paper, we
investigate the possibility of transferring the reasoning capabilities of LLMs
to smaller models via knowledge distillation. Specifically, we propose Sci-CoT,
a two-stage framework that separates the processes of generating rationales and
inferring answers. This method enables a more efficient use of rationales
during the answer inference stage, leading to improved performance on
scientific question-answering tasks. Utilizing Sci-CoT, our 80-million
parameter model is able to exceed the performance of BLOOM-176B in the ARC-Easy
dataset under the few shot setting.
- Abstract(参考訳): 大規模言語モデル(LLM)は、幅広い下流タスクで優れたパフォーマンスを示している。
この能力は、その実質的なパラメータサイズと広範なコーパスでの事前トレーニングに起因する。
さらに、LLMは '`Chain-of-Thought (CoT) prompting'' というメソッドの利用により、複雑な推論タスクに対処する際の推論能力を向上した。
この方法は、最終回答の推論を導く中間推論ステップを生成するように設計されている。
しかし、これらの高度な推論能力は、最小100億のパラメータを持つモデルに出現し、計算資源が制約されている状況においてその有効性を制限することが重要である。
本稿では, LLMの推理能力を知識蒸留によりより小さなモデルに伝達する可能性について検討する。
具体的には,理性の生成過程と回答の推測を分離する2段階フレームワークであるsci-cotを提案する。
この方法では、解答推論段階でより効率的な理性の利用が可能となり、科学的質問応答タスクの性能が向上する。
Sci-CoTを利用すると、80万のパラメータモデルが、ARC-EasyデータセットにおけるBLOOM-176Bの性能を超えることができる。
関連論文リスト
- Improving Small-Scale Large Language Models Function Calling for Reasoning Tasks [0.8425561594225592]
本研究では,関数呼び出しにおいて,より小さな言語モデルを訓練するための新しいフレームワークを提案する。
特定の論理的および数学的推論タスクに焦点を当てている。
このアプローチは,関数呼び出しによるこれらのタスクの小型モデルの性能向上を目的としている。
論文 参考訳(メタデータ) (2024-10-24T16:27:35Z) - Enhancing Multi-Step Reasoning Abilities of Language Models through Direct Q-Function Optimization [50.485788083202124]
強化学習(Reinforcement Learning, RL)は、大規模言語モデルを人間の好みと整合させ、複雑なタスクを遂行する能力を向上させる上で重要な役割を担っている。
反応生成過程をマルコフ決定プロセス(MDP)として定式化し,ソフトアクター・クリティック(SAC)フレームワークを用いて,言語モデルによって直接パラメータ化されたQ関数を最適化する,直接Q関数最適化(DQO)を提案する。
GSM8KとMATHという2つの数学問題解決データセットの実験結果から、DQOは従来の手法よりも優れており、言語モデルを整合させるための有望なオフライン強化学習手法として確立されている。
論文 参考訳(メタデータ) (2024-10-11T23:29:20Z) - Reference Trustable Decoding: A Training-Free Augmentation Paradigm for Large Language Models [79.41139393080736]
大規模言語モデル(LLM)は急速に進歩し、印象的な機能を示している。
In-Context Learning (ICL) など。
効率的なファインチューニング(PEFT)は、現在2つの主要な拡張方法である。
下流タスクへのLLM。
我々は、モデルが微調整なしで新しいタスクに迅速に適応できるパラダイムである参照信頼復号(RTD)を提案する。
論文 参考訳(メタデータ) (2024-09-30T10:48:20Z) - Deconfounded Causality-aware Parameter-Efficient Fine-Tuning for Problem-Solving Improvement of LLMs [12.48241058167222]
大規模言語モデル(LLM)は、人間の指示に基づいて様々なタスクに取り組む際に、顕著な効率性を示した。
しかし、数学や物理学の限界など、推論を必要とするタスクに苦しむことが研究によって明らかになっている。
このことは、LLMが組み込み知識を本当に理解しているか、それとも、コンテンツに対する真の理解なしにトークン分布を複製することを学ぶだけなのかという疑問を提起する。
モデルの推論能力を高めるために,新しいパラメータ効率細調整法であるDecon Causal Adaptation (DCA)を提案する。
論文 参考訳(メタデータ) (2024-09-04T13:17:09Z) - Interpreting and Improving Large Language Models in Arithmetic Calculation [72.19753146621429]
大規模言語モデル(LLM)は、多くのアプリケーションにまたがる顕著な可能性を示している。
本研究では,LLMが計算を行う特定のメカニズムを明らかにする。
LLMの計算性能を高めるために、これらの必須ヘッド/MLPを選択的に微調整する潜在的な利点について検討する。
論文 参考訳(メタデータ) (2024-09-03T07:01:46Z) - FactorLLM: Factorizing Knowledge via Mixture of Experts for Large Language Models [50.331708897857574]
本稿では,高度に訓練された高密度FFNを余分なサブネットワークに分解する新しいアプローチであるFacterLLMを紹介する。
FactorLLMは、最大85%のモデル性能を確保しながら、推論速度を30%以上増加させながら、ソースモデルに匹敵するパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-08-15T16:45:16Z) - Key-Point-Driven Mathematical Reasoning Distillation of Large Language Model [15.542737858152053]
KPDD(Key-Point-Driven Mathematical Reasoning Distillation)を提案する。
KPDDは、問題解決プロセスを3段階に分割することで、SLMの推論性能を向上させる。
実験により、KPDD-CoTは推論能力を大幅に向上し、KPDD-PoTは数学的推論タスクにおける最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-07-14T11:41:03Z) - Retrieval-based Knowledge Transfer: An Effective Approach for Extreme
Large Language Model Compression [64.07696663255155]
大規模事前学習型言語モデル(LLM)は、様々な自然言語処理(NLP)タスクにおいて例外的な性能を示した。
しかし、これらのモデルの巨大なサイズは、現実世界のアプリケーションに展開する上で大きな課題をもたらします。
本稿では,LLMの知識を極めて小規模なモデルに効果的に伝達するRetrieval-based Knowledge Transfer (RetriKT)と呼ばれる新しい圧縮パラダイムを提案する。
論文 参考訳(メタデータ) (2023-10-24T07:58:20Z) - DialCoT Meets PPO: Decomposing and Exploring Reasoning Paths in Smaller
Language Models [18.96271708412086]
CoT(Chain-of-Thought)プロンプトは、少なくとも1000億のパラメータを持つLLM(Large Language Models)の推論能力を高めるのに有効であることが証明されている。
本稿では,ダイアログ誘導型Chain-of-Thought(DialCoT)について紹介する。
論文 参考訳(メタデータ) (2023-10-08T08:52:13Z) - MoEfication: Conditional Computation of Transformer Models for Efficient
Inference [66.56994436947441]
トランスフォーマーベースの事前学習言語モデルは、パラメータ容量が大きいため、ほとんどのNLPタスクにおいて優れた性能を実現することができるが、計算コストも大きい。
スパースアクティベーション現象に基づく条件計算により,大規模モデル推論を高速化する。
そこで本研究では,モデルサイズが等しいMoE(Mix-of-experts)バージョン,すなわちMoEficationに変換することを提案する。
論文 参考訳(メタデータ) (2021-10-05T02:14:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。