論文の概要: Enhancing the Reasoning Capabilities of Small Language Models via Solution Guidance Fine-Tuning
- arxiv url: http://arxiv.org/abs/2412.09906v1
- Date: Fri, 13 Dec 2024 06:45:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-16 15:03:19.707475
- Title: Enhancing the Reasoning Capabilities of Small Language Models via Solution Guidance Fine-Tuning
- Title(参考訳): ソリューションガイダンスファインチューニングによる小言語モデルの推論能力向上
- Authors: Jing Bi, Yuting Wu, Weiwei Xing, Zhenjie Wei,
- Abstract要約: 本稿では,SG(Solution Guidance)およびSGFT(Solution-Guidance Fine-Tuning)について紹介する。
SGは、特定の計算ではなく、意味的および論理的なレベルでの問題理解と分解に焦点を当てている。
SGFTは、SLMを微調整して正確な問題解決ガイダンスを生成することができ、任意のSLMにプロンプトとして柔軟に供給することができる。
- 参考スコア(独自算出の注目度): 14.857842644246634
- License:
- Abstract: Large language models (LLMs) have demonstrated remarkable performance across a wide range of tasks. Advances in prompt engineering and fine-tuning techniques have further enhanced their ability to address complex reasoning challenges. However, these advanced capabilities are often exclusive to models exceeding 100 billion parameters. Although Chain-of-Thought (CoT) fine-tuning methods have been explored for smaller models (under 10 billion parameters), they typically depend on extensive CoT training data, which can introduce inconsistencies and limit effectiveness in low-data settings. To overcome these limitations, this paper introduce a new reasoning strategy Solution Guidance (SG) and a plug-and-play training paradigm Solution-Guidance Fine-Tuning (SGFT) for enhancing the reasoning capabilities of small language models. SG focuses on problem understanding and decomposition at the semantic and logical levels, rather than specific computations, which can effectively improve the SLMs' generalization and reasoning abilities. With only a small amount of SG training data, SGFT can fine-tune a SLM to produce accurate problem-solving guidances, which can then be flexibly fed to any SLM as prompts, enabling it to generate correct answers directly. Experimental results demonstrate that our method significantly improves the performance of SLMs on various reasoning tasks, enhancing both their practicality and efficiency within resource-constrained environments.
- Abstract(参考訳): 大規模言語モデル(LLM)は、幅広いタスクで顕著なパフォーマンスを示している。
迅速なエンジニアリングと微調整技術の進歩は、複雑な推論問題に対処する能力をさらに強化した。
しかしながら、これらの高度な機能は、しばしば1000億のパラメータを超えるモデルに排他的である。
CoT(Chain-of-Thought)ファインチューニング手法は、より小さなモデル(100億のパラメータ以下)で研究されているが、通常はCoTトレーニングデータに依存する。
これらの制約を克服するために,スモールランゲージモデルの推論能力を高めるために,新たな推論戦略であるソリューションガイダンス(SG)とプラグアンドプレイトレーニングパラダイムであるソリューションガイドファインタニング(SGFT)を導入する。
SGは、特定の計算ではなく、意味的および論理的なレベルでの問題理解と分解に焦点を当てており、SLMの一般化と推論能力を効果的に改善することができる。
少量のSGトレーニングデータだけで、SGFTはSLMを微調整して正確な問題解決ガイダンスを生成することができ、任意のSLMにプロンプトとして柔軟に供給することができ、正しい回答を直接生成することができる。
実験により, 資源制約環境下でのSLMの実用性および効率性を向上し, 各種推論タスクにおけるSLMの性能を著しく向上することが示された。
関連論文リスト
- Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
大規模言語モデル(LLM)は、様々なタスクにまたがる顕著な機能を示している。
しかし、彼らは多段階の意思決定と環境フィードバックを必要とする問題に苦戦している。
人間のアノテーションを使わずに環境から報酬モデルを自動的に学習できるフレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-17T18:49:25Z) - Unified Parameter-Efficient Unlearning for LLMs [25.195126838721492]
大規模言語モデル(LLM)は自然言語処理に革命をもたらし、様々なタスクに対する高度な理解と推論を可能にする。
これは、モデルが不注意に機密情報や望ましくない情報を保持および拡散する可能性があるため、重要なプライバシーとセキュリティ上の懸念を提起する。
本稿では,非学習タスクを体系的に分類し,影響関数を用いた高精度な調整を行う,新しいインスタンス単位のアンラーニングフレームワークLLMEraserを紹介する。
論文 参考訳(メタデータ) (2024-11-30T07:21:02Z) - Improving Small-Scale Large Language Models Function Calling for Reasoning Tasks [0.8425561594225592]
本研究では,関数呼び出しにおいて,より小さな言語モデルを訓練するための新しいフレームワークを提案する。
特定の論理的および数学的推論タスクに焦点を当てている。
このアプローチは,関数呼び出しによるこれらのタスクの小型モデルの性能向上を目的としている。
論文 参考訳(メタデータ) (2024-10-24T16:27:35Z) - Reference Trustable Decoding: A Training-Free Augmentation Paradigm for Large Language Models [79.41139393080736]
大規模言語モデル(LLM)は急速に進歩し、印象的な機能を示している。
In-Context Learning (ICL) など。
効率的なファインチューニング(PEFT)は、現在2つの主要な拡張方法である。
下流タスクへのLLM。
我々は、モデルが微調整なしで新しいタスクに迅速に適応できるパラダイムである参照信頼復号(RTD)を提案する。
論文 参考訳(メタデータ) (2024-09-30T10:48:20Z) - One Token Can Help! Learning Scalable and Pluggable Virtual Tokens for Retrieval-Augmented Large Language Models [67.49462724595445]
Retrieval-augmented Generation (RAG)は、大規模言語モデル(LLM)を改善するための有望な方法である。
本稿では,RAGのためのスケーラブルでプラガブルな仮想トークンを学習する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-05-30T03:44:54Z) - Enhancing the General Agent Capabilities of Low-Parameter LLMs through Tuning and Multi-Branch Reasoning [56.82041895921434]
オープンソースの事前訓練された大規模言語モデル(LLM)は、強力な言語理解と生成能力を示す。
現実世界の複雑な問題に対処するエージェントとして使用される場合、ChatGPTやGPT-4のような大型の商用モデルに比べてパフォーマンスははるかに劣る。
論文 参考訳(メタデータ) (2024-03-29T03:48:12Z) - Retrieval-based Knowledge Transfer: An Effective Approach for Extreme
Large Language Model Compression [64.07696663255155]
大規模事前学習型言語モデル(LLM)は、様々な自然言語処理(NLP)タスクにおいて例外的な性能を示した。
しかし、これらのモデルの巨大なサイズは、現実世界のアプリケーションに展開する上で大きな課題をもたらします。
本稿では,LLMの知識を極めて小規模なモデルに効果的に伝達するRetrieval-based Knowledge Transfer (RetriKT)と呼ばれる新しい圧縮パラダイムを提案する。
論文 参考訳(メタデータ) (2023-10-24T07:58:20Z) - Sci-CoT: Leveraging Large Language Models for Enhanced Knowledge
Distillation in Small Models for Scientific QA [5.117094291273979]
大規模言語モデル(LLM)は、幅広い下流タスクで優れたパフォーマンスを示している。
本稿では2段階のフレームワークであるSci-CoTを提案する。
我々の8000万のパラメータモデルは、いくつかのショット設定の下でARC-EasyデータセットにおけるBLOOM-176Bの性能を上回ることができる。
論文 参考訳(メタデータ) (2023-08-09T03:18:07Z) - Efficient Feature Transformations for Discriminative and Generative
Continual Learning [98.10425163678082]
継続的学習のための簡易タスク特化機能マップ変換戦略を提案する。
これらは新しいタスクを学習するための強力な柔軟性を提供し、ベースアーキテクチャに最小パラメータを追加することで実現される。
本手法の有効性と効率を,判別(cifar-100およびimagenet-1k)および生成的タスクの一連の実験を用いて実証する。
論文 参考訳(メタデータ) (2021-03-25T01:48:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。