論文の概要: Unlocking the Diagnostic Potential of ECG through Knowledge Transfer
from Cardiac MRI
- arxiv url: http://arxiv.org/abs/2308.05764v1
- Date: Wed, 9 Aug 2023 10:05:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-14 16:03:18.590912
- Title: Unlocking the Diagnostic Potential of ECG through Knowledge Transfer
from Cardiac MRI
- Title(参考訳): 心臓MRIからの知識伝達による心電図診断の可能性
- Authors: \"Ozg\"un Turgut, Philip M\"uller, Paul Hager, Suprosanna Shit, Sophie
Starck, Martin J. Menten, Eimo Martens, Daniel Rueckert
- Abstract要約: 本稿では,CMR画像からECG埋め込みへドメイン固有情報を転送する,自己監督型コントラスト手法を提案する。
本手法は,マルチモーダルコントラスト学習とマスク付きデータモデリングを組み合わせることで,心電図データのみから全体的心臓検診を可能にする。
- 参考スコア(独自算出の注目度): 6.257859765229826
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The electrocardiogram (ECG) is a widely available diagnostic tool that allows
for a cost-effective and fast assessment of the cardiovascular health. However,
more detailed examination with expensive cardiac magnetic resonance (CMR)
imaging is often preferred for the diagnosis of cardiovascular diseases. While
providing detailed visualization of the cardiac anatomy, CMR imaging is not
widely available due to long scan times and high costs. To address this issue,
we propose the first self-supervised contrastive approach that transfers
domain-specific information from CMR images to ECG embeddings. Our approach
combines multimodal contrastive learning with masked data modeling to enable
holistic cardiac screening solely from ECG data. In extensive experiments using
data from 40,044 UK Biobank subjects, we demonstrate the utility and
generalizability of our method. We predict the subject-specific risk of various
cardiovascular diseases and determine distinct cardiac phenotypes solely from
ECG data. In a qualitative analysis, we demonstrate that our learned ECG
embeddings incorporate information from CMR image regions of interest. We make
our entire pipeline publicly available, including the source code and
pre-trained model weights.
- Abstract(参考訳): 心電図(Electrocardiogram、ECG)は、心臓血管の健康を低コストかつ迅速に評価できる診断ツールである。
しかし, 心血管疾患の診断には, より詳細な心磁気共鳴(CMR)画像検査が好まれる。
心臓解剖を詳細に視覚化する一方、CMR画像は長期のスキャン時間と高コストのために広くは利用できない。
そこで本研究では,CMR画像からECG埋め込みへドメイン固有情報を転送する,自己教師付きコントラスト方式を提案する。
マルチモーダルコントラスト学習とマスキングデータモデリングを組み合わせることにより、心電図データのみから総合的な心臓スクリーニングを可能にする。
40,044人の英国バイオバンクの被験者のデータを用いた広範囲な実験において,本手法の有用性と一般化性を実証した。
各種心血管疾患の被検者固有のリスクを予測し,心電図データのみから異なる心臓表現型を決定する。
定性的分析では、学習したECG埋め込みが関心のあるCMR画像領域からの情報を組み込むことを示した。
ソースコードやトレーニング済みモデルの重みなど、パイプライン全体を公開しています。
関連論文リスト
- Large-scale cross-modality pretrained model enhances cardiovascular state estimation and cardiomyopathy detection from electrocardiograms: An AI system development and multi-center validation study [29.842103054029433]
本研究はCMRの診断強度を活用して心電図解析を強化する革新的なモデルであるCardiacNetsを紹介する。
心臓神経は、冠動脈疾患、心筋症、心膜炎、心不全、肺高血圧など、潜在的なCVDの心臓機能指標とスクリーニングを評価する。
その結果、CardiacNetsは従来のECGのみのモデルより一貫して優れており、スクリーニング精度が大幅に向上していることがわかった。
論文 参考訳(メタデータ) (2024-11-19T09:09:14Z) - Enhancing Cardiovascular Disease Prediction through Multi-Modal Self-Supervised Learning [0.17708284654788597]
本稿では,限られたアノテートデータセットを用いて心血管疾患の予測を改善するための包括的な枠組みを提案する。
マスク付きオートエンコーダを用いて心電図ECGエンコーダを事前訓練し、生の心電図データから関連する特徴を抽出する。
心筋梗塞などの特定の予測課題について,事前に訓練したエンコーダを微調整した。
論文 参考訳(メタデータ) (2024-11-08T16:32:30Z) - Self-supervised inter-intra period-aware ECG representation learning for detecting atrial fibrillation [41.82319894067087]
そこで本研究では,周期型ECG表現学習手法を提案する。
心房細動患者の心電図ではRR間隔の不規則性やP波の欠如を考慮し, 経時的および経時的表現のための特定の事前訓練タスクを開発する。
本手法は,発作/持続性心房細動検出のためのBTCHデータセット,textiti., 0.953/0.996におけるAUCの顕著な性能を示す。
論文 参考訳(メタデータ) (2024-10-08T10:03:52Z) - VizECGNet: Visual ECG Image Network for Cardiovascular Diseases Classification with Multi-Modal Training and Knowledge Distillation [0.7405975743268344]
実際には、ECGデータはデジタル化された信号または印刷された画像として格納される。
本稿では,複数の心血管疾患の予後を決定するために,心電図のみを用いたVizECGNetを提案する。
論文 参考訳(メタデータ) (2024-08-06T01:34:43Z) - CMRxRecon2024: A Multi-Modality, Multi-View K-Space Dataset Boosting Universal Machine Learning for Accelerated Cardiac MRI [39.0162369912624]
CMRxRecon2024データセットは、最も大きく、最も多種多様な公開されたk空間データセットである。
健常者330名から取得され、一般的に使用されるモダリティ、解剖学的視点、臨床心臓MRIにおける獲得軌跡をカバーしている。
論文 参考訳(メタデータ) (2024-06-27T09:50:20Z) - MEIT: Multi-Modal Electrocardiogram Instruction Tuning on Large Language Models for Report Generation [41.324530807795256]
心電図(Electrocardiogram、ECG)は、心臓の状態をモニタリングするための主要な非侵襲的診断ツールである。
最近の研究は心電図データを用いた心臓状態の分類に集中しているが、心電図レポートの生成は見落としている。
LLMとマルチモーダル命令を用いてECGレポート生成に取り組む最初の試みであるMultimodal ECG Instruction Tuning (MEIT) フレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-07T23:20:56Z) - Multi-scale Cross-restoration Framework for Electrocardiogram Anomaly
Detection [33.48389041651675]
心電図(Electrocardiogram、ECG)は、心疾患の診断に広く用いられるツールである。
希少な心疾患は、トレーニングデータセットがすべての心疾患を排出できないことを考慮して、従来の心電図解析を用いて診断されることがある。
本稿では、異常検出を用いて不健康状態を特定し、通常の心電図をトレーニング用として用いることを提案する。
論文 参考訳(メタデータ) (2023-08-03T09:16:57Z) - Automated Cardiovascular Record Retrieval by Multimodal Learning between
Electrocardiogram and Clinical Report [28.608260758775316]
本稿では,Large Language Models (LLM) と Vision-Transformer (ViT) モデルにおける最近のブレークスルーを活用し,ECGの解釈に新たなアプローチを導入する。
入力ECGデータに基づいて,最も類似した症例を自動的に同定する手法を提案する。
本研究は,未開発地域において診断サービスを提供する上で重要な資源となる可能性がある。
論文 参考訳(メタデータ) (2023-04-13T06:32:25Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
大量の胸部ラジオグラフィーの効率的な分析は、医師や放射線技師を助けることができる。
本稿では,視覚情報の効率的な識別と符号化のための離散ウェーブレット変換(DWT)を提案する。
論文 参考訳(メタデータ) (2022-05-08T15:29:54Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
現在世界最大の心臓LGE-MRIデータセットである154個の3D LGE-MRIを用いた「2018 left Atrium Challenge」。
技術および生物学的指標を用いた提案アルゴリズムの解析を行った。
その結果, 最上部法は93.2%, 平均表面は0.7mmであった。
論文 参考訳(メタデータ) (2020-04-26T08:49:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。