論文の概要: Automated Cardiovascular Record Retrieval by Multimodal Learning between
Electrocardiogram and Clinical Report
- arxiv url: http://arxiv.org/abs/2304.06286v3
- Date: Mon, 6 Nov 2023 18:31:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-07 23:06:20.552662
- Title: Automated Cardiovascular Record Retrieval by Multimodal Learning between
Electrocardiogram and Clinical Report
- Title(参考訳): 心電図と臨床報告のマルチモーダル学習による心血管記録の自動検索
- Authors: Jielin Qiu, Jiacheng Zhu, Shiqi Liu, William Han, Jingqi Zhang,
Chaojing Duan, Michael Rosenberg, Emerson Liu, Douglas Weber, Ding Zhao
- Abstract要約: 本稿では,Large Language Models (LLM) と Vision-Transformer (ViT) モデルにおける最近のブレークスルーを活用し,ECGの解釈に新たなアプローチを導入する。
入力ECGデータに基づいて,最も類似した症例を自動的に同定する手法を提案する。
本研究は,未開発地域において診断サービスを提供する上で重要な資源となる可能性がある。
- 参考スコア(独自算出の注目度): 28.608260758775316
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automated interpretation of electrocardiograms (ECG) has garnered significant
attention with the advancements in machine learning methodologies. Despite the
growing interest, most current studies focus solely on classification or
regression tasks, which overlook a crucial aspect of clinical cardio-disease
diagnosis: the diagnostic report generated by experienced human clinicians. In
this paper, we introduce a novel approach to ECG interpretation, leveraging
recent breakthroughs in Large Language Models (LLMs) and Vision-Transformer
(ViT) models. Rather than treating ECG diagnosis as a classification or
regression task, we propose an alternative method of automatically identifying
the most similar clinical cases based on the input ECG data. Also, since
interpreting ECG as images is more affordable and accessible, we process ECG as
encoded images and adopt a vision-language learning paradigm to jointly learn
vision-language alignment between encoded ECG images and ECG diagnosis reports.
Encoding ECG into images can result in an efficient ECG retrieval system, which
will be highly practical and useful in clinical applications. More importantly,
our findings could serve as a crucial resource for providing diagnostic
services in underdeveloped regions.
- Abstract(参考訳): 心電図の自動解釈(ECG)は,機械学習手法の進歩とともに注目されている。
関心の高まりにもかかわらず、近年の研究では、臨床心臓疾患の診断において重要な側面である、経験者臨床医が生み出した診断報告を無視する分類や回帰タスクのみに焦点を当てている。
本稿では,Large Language Models (LLM) と Vision-Transformer (ViT) モデルにおける最近のブレークスルーを活用し,ECGの解釈に新しいアプローチを導入する。
心電図診断を分類または回帰タスクとして扱うのではなく、入力された心電図データに基づいて最も類似した臨床症例を自動的に同定する別の方法を提案する。
また,ECGを画像として解釈しやすく,利用しやすいため,符号化された画像としてECGを処理し,符号化されたECG画像とECG診断レポートの視覚言語アライメントを共同学習するための視覚言語学習パラダイムを採用する。
画像に心電図をエンコードすることで,効率的な心電図検索システムを実現することができる。
さらに重要なことに、この発見は未開発の地域で診断サービスを提供する上で重要なリソースとなり得る。
関連論文リスト
- Self-supervised inter-intra period-aware ECG representation learning for detecting atrial fibrillation [41.82319894067087]
そこで本研究では,周期型ECG表現学習手法を提案する。
心房細動患者の心電図ではRR間隔の不規則性やP波の欠如を考慮し, 経時的および経時的表現のための特定の事前訓練タスクを開発する。
本手法は,発作/持続性心房細動検出のためのBTCHデータセット,textiti., 0.953/0.996におけるAUCの顕著な性能を示す。
論文 参考訳(メタデータ) (2024-10-08T10:03:52Z) - Electrocardiogram Report Generation and Question Answering via Retrieval-Augmented Self-Supervised Modeling [19.513904491604794]
ECG-ReGenは、ECG-to-textレポート生成と質問応答のための検索ベースのアプローチである。
事前学習と動的検索とLarge Language Model(LLM)ベースの改善を組み合わせることで、ECG-ReGenはECGデータと関連するクエリを効果的に分析する。
論文 参考訳(メタデータ) (2024-09-13T12:50:36Z) - ECG Arrhythmia Detection Using Disease-specific Attention-based Deep Learning Model [0.0]
短絡心電図記録から不整脈を検出するための病気特異的注意ベースディープラーニングモデル(DANet)を提案する。
新しいアイデアは、既存のディープニューラルネットワークにソフトコーディングまたはハードコーディングの波形拡張モジュールを導入することである。
DANetをソフトコーディングするためには、自己教師付き事前学習と2段階教師付きトレーニングを組み合わせた学習フレームワークも開発する。
論文 参考訳(メタデータ) (2024-07-25T13:27:10Z) - MEIT: Multi-Modal Electrocardiogram Instruction Tuning on Large Language Models for Report Generation [41.324530807795256]
心電図(Electrocardiogram、ECG)は、心臓の状態をモニタリングするための主要な非侵襲的診断ツールである。
最近の研究は心電図データを用いた心臓状態の分類に集中しているが、心電図レポートの生成は見落としている。
LLMとマルチモーダル命令を用いてECGレポート生成に取り組む最初の試みであるMultimodal ECG Instruction Tuning (MEIT) フレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-07T23:20:56Z) - Polar-Net: A Clinical-Friendly Model for Alzheimer's Disease Detection
in OCTA Images [53.235117594102675]
オプティカルコヒーレンス・トモグラフィーは、網膜微小血管の画像化によってアルツハイマー病(AD)を検出するための有望なツールである。
我々はPolar-Netと呼ばれる新しいディープラーニングフレームワークを提案し、解釈可能な結果を提供し、臨床上の事前知識を活用する。
Polar-Netは既存の最先端の手法よりも優れており,網膜血管変化とADとの関連性について,より貴重な病理学的証拠を提供する。
論文 参考訳(メタデータ) (2023-11-10T11:49:49Z) - ECG-SL: Electrocardiogram(ECG) Segment Learning, a deep learning method
for ECG signal [19.885905393439014]
本稿では,ECG信号の周期的性質をモデル化する新しいECG-Segment Based Learning (ECG-SL) フレームワークを提案する。
この構造的特徴に基づき, 時間的モデルを用いて, 各種臨床業務の時間的情報学習を行う。
提案手法はベースラインモデルより優れ,3つの臨床応用におけるタスク固有手法と比較して競争性能が向上する。
論文 参考訳(メタデータ) (2023-10-01T23:17:55Z) - Unlocking the Diagnostic Potential of ECG through Knowledge Transfer
from Cardiac MRI [6.257859765229826]
本稿では,CMR画像からECG埋め込みへドメイン固有情報を転送する,自己監督型コントラスト手法を提案する。
本手法は,マルチモーダルコントラスト学習とマスク付きデータモデリングを組み合わせることで,心電図データのみから全体的心臓検診を可能にする。
論文 参考訳(メタデータ) (2023-08-09T10:05:11Z) - PulseNet: Deep Learning ECG-signal classification using random
augmentation policy and continous wavelet transform for canines [46.09869227806991]
犬心電図(ECG)の評価には熟練した獣医が必要である。
心電図の解釈と診断支援のための獣医師の現在の利用状況は限られている。
犬の心電図配列を正常または異常と分類するためのディープ畳み込みニューラルネットワーク(CNN)アプローチを実装した。
論文 参考訳(メタデータ) (2023-05-17T09:06:39Z) - Identifying Electrocardiogram Abnormalities Using a
Handcrafted-Rule-Enhanced Neural Network [18.859487271034336]
我々は、深層学習に基づく心電図解析に臨床知識を提供するために、畳み込みニューラルネットワークにいくつかのルールを導入する。
我々の新しいアプローチは、既存の最先端の手法をかなり上回っている。
論文 参考訳(メタデータ) (2022-06-16T04:42:57Z) - Cross-modal Clinical Graph Transformer for Ophthalmic Report Generation [116.87918100031153]
眼科報告生成(ORG)のためのクロスモーダルな臨床グラフ変換器(CGT)を提案する。
CGTは、デコード手順を駆動する事前知識として、臨床関係を視覚特徴に注入する。
大規模FFA-IRベンチマークの実験は、提案したCGTが従来のベンチマーク手法より優れていることを示した。
論文 参考訳(メタデータ) (2022-06-04T13:16:30Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
ディープラーニング(DL)アルゴリズムは、学術的、産業的にも重くなっている。
セグメンテーションフレームワークにECGの検出とデライン化を組み込むことにより、低解釈タスクにDLをうまく適用できることを実証する。
このモデルは、PhyloNetのQTデータベースを使用して、105個の増幅ECG記録から訓練された。
論文 参考訳(メタデータ) (2020-05-11T16:29:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。