Discrete dynamics in the set of quantum measurements
- URL: http://arxiv.org/abs/2308.05835v1
- Date: Thu, 10 Aug 2023 19:34:04 GMT
- Title: Discrete dynamics in the set of quantum measurements
- Authors: Albert Rico and Karol \.Zyczkowski
- Abstract summary: A quantum measurement, often referred to as positive operator-valued measurement (POVM), is a set of positive operators $P_i=P_idaggeq 0$ summing to identity.
We analyze dynamics induced by blockwise bistochastic matrices, in which both columns and rows sum to the identity.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A quantum measurement, often referred to as positive operator-valued
measurement (POVM), is a set of positive operators $P_i=P_i^\dag\geq 0$ summing
to identity, $\sum_iP_i=1\!\!1$. This can be seen as a generalization of a
probability distribution of positive real numbers summing to unity, whose
evolution is given by a stochastic matrix. From this perspective, we consider
transformations of quantum measurements induced by blockwise stochastic
matrices, in which each column defines a POVM. These transformations can be
simulated with a sequence of two conditional measurements, and their input and
output are always jointly measurable. Analyzing dynamics induced by blockwise
bistochastic matrices, in which both columns and rows sum to the identity, we
formulate an operator majorization relation between quantum measurements, which
allows to establish a resource theory in the set of quantum measurements.
Related papers
- Simulating NMR Spectra with a Quantum Computer [49.1574468325115]
This paper provides a formalization of the complete procedure of the simulation of a spin system's NMR spectrum.
We also explain how to diagonalize the Hamiltonian matrix with a quantum computer, thus enhancing the overall process's performance.
arXiv Detail & Related papers (2024-10-28T08:43:40Z) - Feasibility of first principles molecular dynamics in fault-tolerant quantum computer by quantum phase estimation [0.0]
This article shows a proof of concept regarding the feasibility of ab initio molecular simulation.
The wavefunctions and the positions of nuclei are simultaneously determined by the quantum algorithm.
arXiv Detail & Related papers (2024-03-31T06:41:39Z) - One-dimensional Continuous-Time Quantum Markov Chains: qubit probabilities and measures [0.0]
We study continuous-time QMCs on the integer line, half-line and finite segments.
We are able to obtain exact probability calculations in terms of the associated matrix-valueds and measures.
arXiv Detail & Related papers (2024-02-24T18:02:41Z) - Covariant operator bases for continuous variables [0.0]
We work out an alternative basis consisting of monomials on the basic observables, with the crucial property of behaving well under symplectic transformations.
Given the density matrix of a state, the expansion coefficients in that basis constitute the multipoles, which describe the state in a canonically covariant form that is both concise and explicit.
arXiv Detail & Related papers (2023-09-18T18:00:15Z) - Continuously Monitored Quantum Systems beyond Lindblad Dynamics [68.8204255655161]
We study the probability distribution of the expectation value of a given observable over the possible quantum trajectories.
The measurements are applied to the entire system, having the effect of projecting the system into a product state.
arXiv Detail & Related papers (2023-05-06T18:09:17Z) - Order-invariant two-photon quantum correlations in PT-symmetric
interferometers [62.997667081978825]
Multiphoton correlations in linear photonic quantum networks are governed by matrix permanents.
We show that the overall multiphoton behavior of a network from its individual building blocks typically defies intuition.
Our results underline new ways in which quantum correlations may be preserved in counterintuitive ways even in small-scale non-Hermitian networks.
arXiv Detail & Related papers (2023-02-23T09:43:49Z) - Quantum algorithms for matrix operations and linear systems of equations [65.62256987706128]
We propose quantum algorithms for matrix operations using the "Sender-Receiver" model.
These quantum protocols can be used as subroutines in other quantum schemes.
arXiv Detail & Related papers (2022-02-10T08:12:20Z) - Three-fold way of entanglement dynamics in monitored quantum circuits [68.8204255655161]
We investigate the measurement-induced entanglement transition in quantum circuits built upon Dyson's three circular ensembles.
We obtain insights into the interplay between the local entanglement generation by the gates and the entanglement reduction by the measurements.
arXiv Detail & Related papers (2022-01-28T17:21:15Z) - Moments of quantum purity and biorthogonal polynomial recurrence [6.482224543491085]
We study the statistical behavior of entanglement over the Bures-Hall ensemble as measured by the simplest form of an entanglement entropy - the quantum purity.
The main results of this work are the exact second and third moment expressions of quantum purity valid for any subsystem dimensions.
arXiv Detail & Related papers (2021-07-09T19:18:34Z) - Measurement-induced topological entanglement transitions in symmetric
random quantum circuits [0.0]
We study a class of (1+1)D symmetric random quantum circuits with two competing types of measurements.
The circuit exhibits a rich phase diagram involving robust symmetry-protected topological (SPT), trivial, and volume law entangled phases.
arXiv Detail & Related papers (2020-04-15T18:00:00Z) - Joint measurability meets Birkhoff-von Neumann's theorem [77.34726150561087]
We prove that joint measurability arises as a mathematical feature of DNTs in this context, needed to establish a characterisation similar to Birkhoff-von Neumann's.
We also show that DNTs emerge naturally from a particular instance of a joint measurability problem, remarking its relevance in general operator theory.
arXiv Detail & Related papers (2018-09-19T18:57:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.