Feasibility of first principles molecular dynamics in fault-tolerant quantum computer by quantum phase estimation
- URL: http://arxiv.org/abs/2404.10001v2
- Date: Wed, 15 May 2024 09:23:13 GMT
- Title: Feasibility of first principles molecular dynamics in fault-tolerant quantum computer by quantum phase estimation
- Authors: Ichio Kikuchi, Akihito Kikuchi,
- Abstract summary: This article shows a proof of concept regarding the feasibility of ab initio molecular simulation.
The wavefunctions and the positions of nuclei are simultaneously determined by the quantum algorithm.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This article shows a proof of concept regarding the feasibility of ab initio molecular simulation, wherein the wavefunctions and the positions of nuclei are simultaneously determined by the quantum algorithm, as is realized by the so-called Car-Parrinello method by classical computing. The approach used in this article is of a hybrid style, which shall be realized by future fault-tolerant quantum computer. First, the basic equations are approximated by polynomials. Second, those polynomials are transformed to a specific form, wherein all variables (representing the wavefunctions and the atomic coordinates) are given by the transformations acting on a linear space of monomials with finite dimension, and the unknown variables could be determined as the eigenvalues of those transformation matrices. Third, the eigenvalues are determined by quantum phase estimation. Following these three steps, namely, symbolic, numeric, and quantum steps, we can determine the optimized electronic and atomic structures of molecules.
Related papers
- Simulating NMR Spectra with a Quantum Computer [49.1574468325115]
This paper provides a formalization of the complete procedure of the simulation of a spin system's NMR spectrum.
We also explain how to diagonalize the Hamiltonian matrix with a quantum computer, thus enhancing the overall process's performance.
arXiv Detail & Related papers (2024-10-28T08:43:40Z) - Discrete dynamics in the set of quantum measurements [0.0]
A quantum measurement, often referred to as positive operator-valued measurement (POVM), is a set of positive operators $P_i=P_idaggeq 0$ summing to identity.
We analyze dynamics induced by blockwise bistochastic matrices, in which both columns and rows sum to the identity.
arXiv Detail & Related papers (2023-08-10T19:34:04Z) - A hybrid quantum-classical algorithm for multichannel quantum scattering
of atoms and molecules [62.997667081978825]
We propose a hybrid quantum-classical algorithm for solving the Schr"odinger equation for atomic and molecular collisions.
The algorithm is based on the $S$-matrix version of the Kohn variational principle, which computes the fundamental scattering $S$-matrix.
We show how the algorithm could be scaled up to simulate collisions of large polyatomic molecules.
arXiv Detail & Related papers (2023-04-12T18:10:47Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - A Quantum-compute Algorithm for Exact Laser-driven Electron Dynamics in
Molecules [0.0]
We simulate the laser-driven electron dynamics in small molecules such as lithium hydride.
Results are compared with the time-dependent full configuration interaction method (TD-FCI)
arXiv Detail & Related papers (2022-05-21T09:35:05Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - Computing molecular excited states on a D-Wave quantum annealer [52.5289706853773]
We demonstrate the use of a D-Wave quantum annealer for the calculation of excited electronic states of molecular systems.
These simulations play an important role in a number of areas, such as photovoltaics, semiconductor technology and nanoscience.
arXiv Detail & Related papers (2021-07-01T01:02:17Z) - Quantum-Classical Hybrid Algorithm for the Simulation of All-Electron
Correlation [58.720142291102135]
We present a novel hybrid-classical algorithm that computes a molecule's all-electron energy and properties on the classical computer.
We demonstrate the ability of the quantum-classical hybrid algorithms to achieve chemically relevant results and accuracy on currently available quantum computers.
arXiv Detail & Related papers (2021-06-22T18:00:00Z) - Calculation of the ground-state Stark effect in small molecules using
the variational quantum eigensolver [0.0]
We study a quantum simulation for the hydrogen (H2) and lithium hydride (LiH) molecules, at an actual commercially available quantum computer, the IBM Q.
Using the Variational Quantum Eigensolver (VQE) method, we study the molecule's ground state energy versus interatomic distance, under the action of stationary electric fields.
arXiv Detail & Related papers (2021-03-22T11:49:42Z) - Quantum Computing for Atomic and Molecular Resonances [0.0]
The complex-scaling method can be used to calculate molecular resonances within the Born-Oppenheimer approximation.
We propose techniques to simulate resonances on a quantum computer.
arXiv Detail & Related papers (2020-11-27T21:39:23Z) - Quantum computation of molecular response properties [12.66895275733527]
We propose an algorithm for computing linear and nonlinear molecular response properties on quantum computers.
On the other hand, we introduce a variational hybrid quantum-classical variant of the proposed algorithm, which is more practical for near-term quantum devices.
arXiv Detail & Related papers (2020-01-10T12:49:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.