論文の概要: Learning Team-Based Navigation: A Review of Deep Reinforcement Learning
Techniques for Multi-Agent Pathfinding
- arxiv url: http://arxiv.org/abs/2308.05893v2
- Date: Thu, 8 Feb 2024 18:31:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-09 19:39:08.417838
- Title: Learning Team-Based Navigation: A Review of Deep Reinforcement Learning
Techniques for Multi-Agent Pathfinding
- Title(参考訳): チームベースナビゲーションの学習:マルチエージェントパスフィニングのための深層強化学習手法のレビュー
- Authors: Jaehoon Chung, Jamil Fayyad, Younes Al Younes, and Homayoun Najjaran
- Abstract要約: 本稿では、MAPFにおけるDRLベースのアプローチの統合に焦点を当てる。
我々は、MAPFソリューションの評価における現在のギャップを、統一的な評価指標の欠如に対処して埋めることを目的としている。
本稿では,モデルベースDRLの将来的な方向性としての可能性について論じ,その基礎的理解を提供する。
- 参考スコア(独自算出の注目度): 2.7898966850590625
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Multi-agent pathfinding (MAPF) is a critical field in many large-scale
robotic applications, often being the fundamental step in multi-agent systems.
The increasing complexity of MAPF in complex and crowded environments, however,
critically diminishes the effectiveness of existing solutions. In contrast to
other studies that have either presented a general overview of the recent
advancements in MAPF or extensively reviewed Deep Reinforcement Learning (DRL)
within multi-agent system settings independently, our work presented in this
review paper focuses on highlighting the integration of DRL-based approaches in
MAPF. Moreover, we aim to bridge the current gap in evaluating MAPF solutions
by addressing the lack of unified evaluation metrics and providing
comprehensive clarification on these metrics. Finally, our paper discusses the
potential of model-based DRL as a promising future direction and provides its
required foundational understanding to address current challenges in MAPF. Our
objective is to assist readers in gaining insight into the current research
direction, providing unified metrics for comparing different MAPF algorithms
and expanding their knowledge of model-based DRL to address the existing
challenges in MAPF.
- Abstract(参考訳): マルチエージェントパスフィンディング(MAPF)は、多くの大規模ロボットアプリケーションにおいて重要な分野であり、しばしばマルチエージェントシステムの基本的なステップである。
しかし、複雑で混み合った環境におけるMAPFの複雑さの増大は、既存のソリューションの有効性を著しく低下させる。
MAPFの最近の進歩を概観した研究や、マルチエージェントシステム設定におけるDeep Reinforcement Learning(DRL)を個別に検討した研究とは対照的に、本論文では、MAPFにおけるDRLベースのアプローチの統合を強調した。
さらに、統合評価指標の欠如に対処し、これらの指標を包括的に解明することで、MAPFソリューションの評価における現在のギャップを埋めることを目指している。
最後に,モデルベースDRLの将来的な方向性としての可能性について論じ,MAPFの課題に対処するために必要な基礎的理解を提供する。
我々の目標は、読者が現在の研究の方向性を知るのを支援し、異なるMAPFアルゴリズムを比較し、MAPFの既存の課題に対処するためにモデルベースDRLの知識を拡大するための統一的なメトリクスを提供することである。
関連論文リスト
- SIGMA: Sheaf-Informed Geometric Multi-Agent Pathfinding [4.801673346687721]
MAPF(Multi-Agent Path Finding)問題は、既知の、潜在的に障害物のある環境において、複数のエージェントに対して最も短く、衝突のない経路を決定することを目的としている。
本稿では,分散化された深層強化学習にせん断理論を適用し,エージェント同士の幾何学的相互依存性を学習できるようにする新しい枠組みを提案する。
特に,ニューラルネットワークを組み込んで,せん断理論に基づく潜在空間のコンセンサスを概ねモデル化し,自己教師型学習を通じて学習する。
論文 参考訳(メタデータ) (2025-02-10T13:17:34Z) - Survey on AI-Generated Media Detection: From Non-MLLM to MLLM [51.91311158085973]
AI生成メディアを検出する方法は急速に進化してきた。
MLLMに基づく汎用検出器は、信頼性検証、説明可能性、ローカライゼーション機能を統合する。
倫理的・セキュリティ的な配慮が、重要な世界的な懸念として浮上している。
論文 参考訳(メタデータ) (2025-02-07T12:18:20Z) - Progressive Multimodal Reasoning via Active Retrieval [64.74746997923967]
多段階多モーダル推論タスクは、大規模言語モデル(MLLM)に重大な課題をもたらす
本稿では,MLLMの推論能力の向上を目的とした汎用フレームワークAR-MCTSを提案する。
我々は,AR-MCTSがサンプリングの多様性と精度を最適化し,信頼性の高いマルチモーダル推論を実現することを示す。
論文 参考訳(メタデータ) (2024-12-19T13:25:39Z) - Towards Sample-Efficiency and Generalization of Transfer and Inverse Reinforcement Learning: A Comprehensive Literature Review [50.67937325077047]
本稿では,転送および逆強化学習(T-IRL)によるRLアルゴリズムのサンプル効率と一般化を実現するための総合的なレビューを行う。
以上の結果から,最近の研究成果の大部分は,人間のループとシム・トゥ・リアル戦略を活用することで,上記の課題に対処していることが示唆された。
IRL構造の下では、経験の少ない移行と、そのようなフレームワークのマルチエージェントおよびマルチインテンション問題への拡張を必要とするトレーニングスキームが近年研究者の優先事項となっている。
論文 参考訳(メタデータ) (2024-11-15T15:18:57Z) - A Survey on Multimodal Benchmarks: In the Era of Large AI Models [13.299775710527962]
MLLM(Multimodal Large Language Models)は、人工知能に大きな進歩をもたらした。
この調査は、4つのコアドメイン(理解、推論、生成、アプリケーション)にわたるMLLMを評価する211のベンチマークを体系的にレビューする。
論文 参考訳(メタデータ) (2024-09-21T15:22:26Z) - MAPF-GPT: Imitation Learning for Multi-Agent Pathfinding at Scale [46.35418789518417]
MAPF(Multi-agent pathfinding)は、一般に、共有環境において複数のエージェントに対して衝突のない経路を見つけることを必要とする問題である。
近年、MAPFへの学習に基づくアプローチが注目されており、特に深層強化学習を活用している。
MAPF-GPTは,多種多様な問題インスタンスにおいて,現在最も優れた学習可能なMAPFソルバよりも優れていることを示す。
論文 参考訳(メタデータ) (2024-08-29T12:55:10Z) - Large Multimodal Agents: A Survey [78.81459893884737]
大規模言語モデル(LLM)は、テキストベースのAIエージェントのパワーで優れたパフォーマンスを実現している。
LLMを利用したAIエージェントをマルチモーダルドメインに拡張することに焦点を当てた、新たな研究トレンドがある。
本総説は, この急速に発展する分野において, 今後の研究に有用な洞察とガイドラインを提供することを目的としている。
論文 参考訳(メタデータ) (2024-02-23T06:04:23Z) - A Survey of Meta-Reinforcement Learning [69.76165430793571]
我々は,メタRLと呼ばれるプロセスにおいて,機械学習問題自体として,より優れたRLアルゴリズムを開発した。
本稿では,タスク分布の存在と各タスクに利用可能な学習予算に基づいて,高レベルでメタRL研究をクラスタ化する方法について議論する。
RL実践者のための標準ツールボックスにメタRLを組み込むことの道程について,オープンな問題を提示することによって,結論を下す。
論文 参考訳(メタデータ) (2023-01-19T12:01:41Z) - Compilation-based Solvers for Multi-Agent Path Finding: a Survey,
Discussion, and Future Opportunities [7.766921168069532]
このトピックの過去の発展と現在の傾向から学んだ教訓を示し、その広範な影響について議論します。
最適MAPF解決のための2つの主要なアプローチは、(1)MAPFを直接解決する専用の検索ベース手法、(2)MAPFインスタンスを異なる確立された形式でインスタンスに還元するコンパイルベース手法である。
論文 参考訳(メタデータ) (2021-04-23T20:13:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。