論文の概要: Toward a Better Understanding of Loss Functions for Collaborative
Filtering
- arxiv url: http://arxiv.org/abs/2308.06091v2
- Date: Mon, 30 Oct 2023 10:33:49 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-01 23:03:49.356573
- Title: Toward a Better Understanding of Loss Functions for Collaborative
Filtering
- Title(参考訳): 協調フィルタリングにおける損失関数の理解を深める
- Authors: Seongmin Park, Mincheol Yoon, Jae-woong Lee, Hogun Park, Jongwuk Lee
- Abstract要約: 協調フィルタリング(CF)は現代のレコメンデータシステムにおいて重要な手法である。
最近の研究は、損失関数を単純に再構成するだけで、大幅な性能向上が達成できることを示している。
本稿では、アライメントと均一性の設計を改善する新しい損失関数を提案する。
- 参考スコア(独自算出の注目度): 13.581193492311805
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Collaborative filtering (CF) is a pivotal technique in modern recommender
systems. The learning process of CF models typically consists of three
components: interaction encoder, loss function, and negative sampling. Although
many existing studies have proposed various CF models to design sophisticated
interaction encoders, recent work shows that simply reformulating the loss
functions can achieve significant performance gains. This paper delves into
analyzing the relationship among existing loss functions. Our mathematical
analysis reveals that the previous loss functions can be interpreted as
alignment and uniformity functions: (i) the alignment matches user and item
representations, and (ii) the uniformity disperses user and item distributions.
Inspired by this analysis, we propose a novel loss function that improves the
design of alignment and uniformity considering the unique patterns of datasets
called Margin-aware Alignment and Weighted Uniformity (MAWU). The key novelty
of MAWU is two-fold: (i) margin-aware alignment (MA) mitigates
user/item-specific popularity biases, and (ii) weighted uniformity (WU) adjusts
the significance between user and item uniformities to reflect the inherent
characteristics of datasets. Extensive experimental results show that MF and
LightGCN equipped with MAWU are comparable or superior to state-of-the-art CF
models with various loss functions on three public datasets.
- Abstract(参考訳): 協調フィルタリング(CF)は現代の推薦システムにおいて重要な手法である。
CFモデルの学習プロセスは通常、インタラクションエンコーダ、損失関数、ネガティブサンプリングの3つのコンポーネントで構成される。
多くの既存の研究で洗練された相互作用エンコーダを設計するために様々なcfモデルが提案されているが、最近の研究は損失関数の再構成が著しい性能向上を達成できることを示している。
本稿では,既存の損失関数の関係を考察する。
我々の数学的解析によると、以前の損失関数はアライメントと均一性関数として解釈できる。
(i)アライメントがユーザとアイテムの表現と一致すること、
(ii)均一性は、ユーザとアイテムの分布を分散させる。
この分析に触発されて、Margin-aware Alignment and Weighted Uniformity (MAWU)と呼ばれるデータセットのユニークなパターンを考慮したアライメントと均一性の設計を改善する新しい損失関数を提案する。
mawuの鍵となる新しさは2つあります。
(i)マージン認識アライメント(ma)は、ユーザ/項目固有の人気バイアスを軽減し、
(II)重み付き均一性(WU)は、ユーザとアイテムの均一性の重要性を調整し、データセット固有の特性を反映する。
広範な実験の結果、mawuを搭載したmfとlightgcnは、3つのパブリックデータセットで様々な損失関数を持つ最先端cfモデルに匹敵するか優れていることが示された。
関連論文リスト
- Dissecting Misalignment of Multimodal Large Language Models via Influence Function [12.832792175138241]
コントラスト損失に対する拡張影響関数 (ECIF) を導入し, コントラスト損失に対する影響関数について検討した。
ECIFは正と負の両方のサンプルを考慮し、対照的な学習モデルの閉形式近似を提供する。
ECIFを基盤として,MLLMにおけるデータ評価,誤アライメント検出,誤予測トレースバックタスクなどの一連のアルゴリズムを開発した。
論文 参考訳(メタデータ) (2024-11-18T15:45:41Z) - PCF-Lift: Panoptic Lifting by Probabilistic Contrastive Fusion [80.79938369319152]
我々は,PCF(Probabilis-tic Contrastive Fusion)に基づくPCF-Liftという新しいパイプラインを設計する。
私たちのPCFリフトは、ScanNetデータセットやMessy Roomデータセット(シーンレベルのPQが4.4%改善)など、広く使用されているベンチマークにおいて、最先端の手法よりも大幅に優れています。
論文 参考訳(メタデータ) (2024-10-14T16:06:59Z) - A Framework for Fine-Tuning LLMs using Heterogeneous Feedback [69.51729152929413]
ヘテロジニアスフィードバックを用いた大規模言語モデル(LLM)の微調整フレームワークを提案する。
まず、不均一なフィードバックデータをSFTやRLHFなどの手法と互換性のある単一の監視形式にまとめる。
次に、この統合されたフィードバックデータセットから、性能向上を得るために高品質で多様なサブセットを抽出する。
論文 参考訳(メタデータ) (2024-08-05T23:20:32Z) - Fully Differentiable Correlation-driven 2D/3D Registration for X-ray to CT Image Fusion [3.868072865207522]
画像ベース剛性2D/3Dレジストレーションは, 蛍光ガイド下外科手術において重要な技術である。
デュアルブランチCNN変換器エンコーダを用いた完全微分型相関型ネットワークを提案する。
組込み情報に基づく低周波特徴と高周波特徴の分解に対して相関型損失を提案する。
論文 参考訳(メタデータ) (2024-02-04T14:12:51Z) - NPEFF: Non-Negative Per-Example Fisher Factorization [52.44573961263344]
エンド・ツー・エンドの微分可能モデルに容易に適用可能な,NPEFFと呼ばれる新しい解釈可能性手法を提案する。
我々はNPEFFが言語モデルと視覚モデルの実験を通して解釈可能なチューニングを持つことを実証した。
論文 参考訳(メタデータ) (2023-10-07T02:02:45Z) - Con$^{2}$DA: Simplifying Semi-supervised Domain Adaptation by Learning
Consistent and Contrastive Feature Representations [1.2891210250935146]
Con$2$DAは、半教師付き学習の最近の進歩を半教師付きドメイン適応問題に拡張するフレームワークである。
我々のフレームワークは、与えられた入力に対してデータ変換を行うことで、関連するサンプルのペアを生成する。
我々は、異なる損失関数を使用して、関連するデータペアのサンプルの特徴表現間の一貫性を強制します。
論文 参考訳(メタデータ) (2022-04-04T15:05:45Z) - C$^{4}$Net: Contextual Compression and Complementary Combination Network
for Salient Object Detection [0.0]
機能結合は、乗算や加算のような他の組み合わせ方法よりもうまく機能することを示す。
また、共同特徴学習は、処理中の情報共有のため、より良い結果をもたらす。
論文 参考訳(メタデータ) (2021-10-22T16:14:10Z) - Feature Weighted Non-negative Matrix Factorization [92.45013716097753]
本稿では,FNMF(Feature weighted Non- negative Matrix Factorization)を提案する。
FNMFはその重要性に応じて特徴の重みを適応的に学習する。
提案する最適化アルゴリズムを用いて効率的に解くことができる。
論文 参考訳(メタデータ) (2021-03-24T21:17:17Z) - BCFNet: A Balanced Collaborative Filtering Network with Attention
Mechanism [106.43103176833371]
協調フィルタリング(CF)ベースの推奨方法が広く研究されている。
BCFNet(Balanced Collaborative Filtering Network)という新しい推薦モデルを提案する。
さらに注意機構は、暗黙のフィードバックの中で隠れた情報をよりよく捉え、ニューラルネットワークの学習能力を強化するように設計されている。
論文 参考訳(メタデータ) (2021-03-10T14:59:23Z) - Out-of-distribution Generalization via Partial Feature Decorrelation [72.96261704851683]
本稿では,特徴分解ネットワークと対象画像分類モデルとを協調的に最適化する,PFDL(Partial Feature Deorrelation Learning)アルゴリズムを提案する。
実世界のデータセットを用いた実験により,OOD画像分類データセットにおけるバックボーンモデルの精度が向上することを示した。
論文 参考訳(メタデータ) (2020-07-30T05:48:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。