A Comparative Study of Loss Functions: Traffic Predictions in Regular
and Congestion Scenarios
- URL: http://arxiv.org/abs/2308.15464v1
- Date: Tue, 29 Aug 2023 17:44:02 GMT
- Title: A Comparative Study of Loss Functions: Traffic Predictions in Regular
and Congestion Scenarios
- Authors: Yangxinyu Xie, Tanwi Mallick
- Abstract summary: We explore various loss functions inspired by heavy tail analysis and imbalanced classification problems to address this issue.
We discover that when optimizing for Mean Absolute Error (MAE), the MAE-Focal Loss function stands out as the most effective.
This research enhances deep learning models' capabilities in forecasting sudden speed changes due to congestion.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Spatiotemporal graph neural networks have achieved state-of-the-art
performance in traffic forecasting. However, they often struggle to forecast
congestion accurately due to the limitations of traditional loss functions.
While accurate forecasting of regular traffic conditions is crucial, a reliable
AI system must also accurately forecast congestion scenarios to maintain safe
and efficient transportation. In this paper, we explore various loss functions
inspired by heavy tail analysis and imbalanced classification problems to
address this issue. We evaluate the efficacy of these loss functions in
forecasting traffic speed, with an emphasis on congestion scenarios. Through
extensive experiments on real-world traffic datasets, we discovered that when
optimizing for Mean Absolute Error (MAE), the MAE-Focal Loss function stands
out as the most effective. When optimizing Mean Squared Error (MSE), Gumbel
Loss proves to be the superior choice. These choices effectively forecast
traffic congestion events without compromising the accuracy of regular traffic
speed forecasts. This research enhances deep learning models' capabilities in
forecasting sudden speed changes due to congestion and underscores the need for
more research in this direction. By elevating the accuracy of congestion
forecasting, we advocate for AI systems that are reliable, secure, and
resilient in practical traffic management scenarios.
Related papers
- Causally-Aware Spatio-Temporal Multi-Graph Convolution Network for Accurate and Reliable Traffic Prediction [5.200012764049096]
This study focuses on an instance of--temporal problem--traffic prediction--to demonstrate an advanced deep learning model for making accurate and reliable forecast.
We propose an end-to-end traffic prediction framework that leverages three primary components to accurate and reliable traffic predictions.
Experimental results on two real-world traffic datasets demonstrate that the method outperforms several state-of-the-art models in prediction accuracy.
arXiv Detail & Related papers (2024-08-23T14:35:54Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - Interpretable Cascading Mixture-of-Experts for Urban Traffic Congestion Prediction [24.26429523848735]
Rapid urbanization has significantly escalated traffic congestion, underscoring the need for advanced congestion prediction services.
We introduce a Congestion Prediction Mixture-of-Experts, CP-MoE, to address the challenges.
CP-MoE has been deployed in DiDi to improve the accuracy and reliability of the travel time estimation system.
arXiv Detail & Related papers (2024-06-14T12:57:17Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - Enhancing Traffic Flow Prediction using Outlier-Weighted AutoEncoders:
Handling Real-Time Changes [0.7614628596146602]
We introduce the Outlier Weighted Autoencoder Modeling (OWAM) framework.
OWAM employs autoencoders for local outlier detection and generates correlation scores to assess neighboring traffic's influence.
This information enhances the traffic model's performance and supports effective real-time updates.
arXiv Detail & Related papers (2023-12-27T14:44:58Z) - An Application of Vector Autoregressive Model for Analyzing the Impact
of Weather And Nearby Traffic Flow On The Traffic Volume [0.0]
This paper aims to predict the traffic flow at one road segment based on nearby traffic volume and weather conditions.
Our team also discover the impact of weather conditions and nearby traffic volume on the traffic flow at a target point.
arXiv Detail & Related papers (2023-11-12T16:45:29Z) - Streaming Motion Forecasting for Autonomous Driving [71.7468645504988]
We introduce a benchmark that queries future trajectories on streaming data and we refer to it as "streaming forecasting"
Our benchmark inherently captures the disappearance and re-appearance of agents, which is a safety-critical problem yet overlooked by snapshot-based benchmarks.
We propose a plug-and-play meta-algorithm called "Predictive Streamer" that can adapt any snapshot-based forecaster into a streaming forecaster.
arXiv Detail & Related papers (2023-10-02T17:13:16Z) - Uncertainty Quantification for Image-based Traffic Prediction across
Cities [63.136794104678025]
Uncertainty quantification (UQ) methods provide an approach to induce probabilistic reasoning.
We investigate their application to a large-scale image-based traffic dataset spanning multiple cities.
We find that our approach can capture both temporal and spatial effects on traffic behaviour in a representative case study for the city of Moscow.
arXiv Detail & Related papers (2023-08-11T13:35:52Z) - Multi-graph Spatio-temporal Graph Convolutional Network for Traffic Flow
Prediction [0.5551832942032954]
Daily traffic flow prediction still faces challenges at network-wide toll stations.
In this paper, a correlative prediction method is proposed for daily traffic flow highway domain through flow-temporal deep learning.
Our method shows clear improvement in predictive accuracy than baselines and practical benefits in business.
arXiv Detail & Related papers (2023-08-10T14:20:43Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
A self-driving vehicle (SDV) must be able to perceive its surroundings and predict the future behavior of other traffic participants.
Existing works either perform object detection followed by trajectory of the detected objects, or predict dense occupancy and flow grids for the whole scene.
This motivates our unified approach to perception and future prediction that implicitly represents occupancy and flow over time with a single neural network.
arXiv Detail & Related papers (2023-08-02T23:39:24Z) - A Graph Convolutional Network with Signal Phasing Information for
Arterial Traffic Prediction [63.470149585093665]
arterial traffic prediction plays a crucial role in the development of modern intelligent transportation systems.
Many existing studies on arterial traffic prediction only consider temporal measurements of flow and occupancy from loop sensors and neglect the rich spatial relationships between upstream and downstream detectors.
We fill this gap by enhancing a deep learning approach, Diffusion Convolutional Recurrent Neural Network, with spatial information generated from signal timing plans at targeted intersections.
arXiv Detail & Related papers (2020-12-25T01:40:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.