Phased Deep Spatio-temporal Learning for Highway Traffic Volume
Prediction
- URL: http://arxiv.org/abs/2308.06155v1
- Date: Fri, 11 Aug 2023 14:33:20 GMT
- Title: Phased Deep Spatio-temporal Learning for Highway Traffic Volume
Prediction
- Authors: Weilong Ding, Tianpu Zhang, Zhe Wang
- Abstract summary: Deep-temporal learning method is proposed to predict daily traffic volume in three phases.
In decision phase, traffic volumes on a coming day network-wide toll stations would be achieved effectively.
- Score: 3.8277254030074537
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Inter-city highway transportation is significant for citizens' modern urban
life and generates heterogeneous sensory data with spatio-temporal
characteristics. As a routine analysis in transportation domain, daily traffic
volume estimation faces challenges for highway toll stations including lacking
of exploration of correlative spatio-temporal features from a long-term
perspective and effective means to deal with data imbalance which always
deteriorates the predictive performance. In this paper, a deep spatio-temporal
learning method is proposed to predict daily traffic volume in three phases. In
feature pre-processing phase, data is normalized elaborately according to
latent long-tail distribution. In spatio-temporal learning phase, a hybrid
model is employed combining fully convolution network (FCN) and long short-term
memory (LSTM), which considers time, space, meteorology, and calendar from
heterogeneous data. In decision phase, traffic volumes on a coming day at
network-wide toll stations would be achieved effectively, which is especially
calibrated for vital few highway stations. Using real-world data from one
Chinese provincial highway, extensive experiments show our method has distinct
improvement for predictive accuracy than various traditional models, reaching
5.269 and 0.997 in MPAE and R-squre metrics, respectively.
Related papers
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - Interpretable Cascading Mixture-of-Experts for Urban Traffic Congestion Prediction [24.26429523848735]
Rapid urbanization has significantly escalated traffic congestion, underscoring the need for advanced congestion prediction services.
We introduce a Congestion Prediction Mixture-of-Experts, CP-MoE, to address the challenges.
CP-MoE has been deployed in DiDi to improve the accuracy and reliability of the travel time estimation system.
arXiv Detail & Related papers (2024-06-14T12:57:17Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
Long-term urban mobility predictions play a crucial role in the effective management of urban facilities and services.
Traditionally, urban mobility data has been structured as videos, treating longitude and latitude as fundamental pixels.
In our research, we introduce a fresh perspective on urban mobility prediction.
Instead of oversimplifying urban mobility data as traditional video data, we regard it as a complex time series.
arXiv Detail & Related papers (2023-12-04T07:39:05Z) - Multi-graph Spatio-temporal Graph Convolutional Network for Traffic Flow
Prediction [0.5551832942032954]
Daily traffic flow prediction still faces challenges at network-wide toll stations.
In this paper, a correlative prediction method is proposed for daily traffic flow highway domain through flow-temporal deep learning.
Our method shows clear improvement in predictive accuracy than baselines and practical benefits in business.
arXiv Detail & Related papers (2023-08-10T14:20:43Z) - A Slow-Shifting Concerned Machine Learning Method for Short-term Traffic
Flow Forecasting [21.6456624219159]
A crucial challenge in traffic flow forecasting is the slow shifting in temporal peaks between daily and weekly cycles.
We propose a slow shifting concerned machine learning method for traffic flow forecasting, which includes two parts.
Our proposed method outperforms the state-of-art results by 14.55% and 62.56% using the metrics of root mean squared error and mean absolute percentage error, respectively.
arXiv Detail & Related papers (2023-03-31T03:07:53Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
spatial-temporal Graph Neural Network (GNN) models have emerged as one of the most promising methods to solve this problem.
We propose a novel propagation delay-aware dynamic long-range transFormer, namely PDFormer, for accurate traffic flow prediction.
Our method can not only achieve state-of-the-art performance but also exhibit competitive computational efficiency.
arXiv Detail & Related papers (2023-01-19T08:42:40Z) - Correlating sparse sensing for large-scale traffic speed estimation: A
Laplacian-enhanced low-rank tensor kriging approach [76.45949280328838]
We propose a Laplacian enhanced low-rank tensor (LETC) framework featuring both lowrankness and multi-temporal correlations for large-scale traffic speed kriging.
We then design an efficient solution algorithm via several effective numeric techniques to scale up the proposed model to network-wide kriging.
arXiv Detail & Related papers (2022-10-21T07:25:57Z) - A Graph Convolutional Network with Signal Phasing Information for
Arterial Traffic Prediction [63.470149585093665]
arterial traffic prediction plays a crucial role in the development of modern intelligent transportation systems.
Many existing studies on arterial traffic prediction only consider temporal measurements of flow and occupancy from loop sensors and neglect the rich spatial relationships between upstream and downstream detectors.
We fill this gap by enhancing a deep learning approach, Diffusion Convolutional Recurrent Neural Network, with spatial information generated from signal timing plans at targeted intersections.
arXiv Detail & Related papers (2020-12-25T01:40:29Z) - Traffic congestion anomaly detection and prediction using deep learning [6.370406399003785]
Congestion prediction is a major priority for traffic management centres around the world to ensure timely incident response handling.
The increasing amounts of generated traffic data have been used to train machine learning predictors for traffic, but this is a challenging task due to inter-dependencies of traffic flow both in time and space.
We show that our deep learning models consistently outperform traditional methods, and we conduct a comparative analysis of the optimal time horizon of historical data required to predict traffic flow at different time points in the future.
arXiv Detail & Related papers (2020-06-23T08:49:46Z) - An Effective Dynamic Spatio-temporal Framework with Multi-Source
Information for Traffic Prediction [0.22940141855172028]
The proposed model improves the prediction precision by approximately 3-7 percent on the NYC-Taxi and NYC-Bike datasets.
The experimental results show that the proposed model improves the prediction precision by approximately 3-7 percent on the NYC-Taxi and NYC-Bike datasets.
arXiv Detail & Related papers (2020-05-08T14:23:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.