論文の概要: Safety in Traffic Management Systems: A Comprehensive Survey
- arxiv url: http://arxiv.org/abs/2308.06204v1
- Date: Fri, 11 Aug 2023 16:09:12 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-14 13:37:02.673267
- Title: Safety in Traffic Management Systems: A Comprehensive Survey
- Title(参考訳): 交通管理システムの安全性:包括的調査
- Authors: Wenlu Du, Ankan Dash, Jing Li, Hua Wei and Guiling Wang
- Abstract要約: 交通管理システムにおける高度な技術の利用により、新たな安全課題がもたらされた。
事故を防止し,道路利用者への影響を最小限に抑えるためには,これらのシステムの安全性を確保することが重要である。
- 参考スコア(独自算出の注目度): 6.289873454543178
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traffic management systems play a vital role in ensuring safe and efficient
transportation on roads. However, the use of advanced technologies in traffic
management systems has introduced new safety challenges. Therefore, it is
important to ensure the safety of these systems to prevent accidents and
minimize their impact on road users. In this survey, we provide a comprehensive
review of the literature on safety in traffic management systems. Specifically,
we discuss the different safety issues that arise in traffic management
systems, the current state of research on safety in these systems, and the
techniques and methods proposed to ensure the safety of these systems. We also
identify the limitations of the existing research and suggest future research
directions.
- Abstract(参考訳): 交通管理システムは道路の安全かつ効率的な交通を確保する上で重要な役割を担っている。
しかし,交通管理システムにおける高度な技術の利用は,新たな安全課題をもたらしている。
したがって,事故防止や道路利用者への影響を最小限に抑えるため,これらのシステムの安全性を確保することが重要である。
本稿では,交通管理システムにおける安全に関する文献の包括的レビューを行う。
具体的には,交通管理システムにおいて発生する異なる安全性問題,これらのシステムにおける安全研究の現状,システムの安全性を確保するために提案された技術と手法について論じる。
また,既存の研究の限界を特定し,今後の研究方向性を提案する。
関連論文リスト
- Safety through Permissibility: Shield Construction for Fast and Safe Reinforcement Learning [57.84059344739159]
シールドディング」は、強化学習(RL)の安全性を強制する一般的な手法である
安全と遮蔽構造に対処する新しい許容性に基づく枠組みを提案する。
論文 参考訳(メタデータ) (2024-05-29T18:00:21Z) - Redefining Safety for Autonomous Vehicles [0.9208007322096532]
コンピュータベースのシステムの安全性に関する既存の定義と関連する概念的枠組みを再考する必要がある。
人間の運転者なしでの運転は、安全上の懸念を劇的に増大させる。
コアシステムの安全性に関する概念を更新する。
論文 参考訳(メタデータ) (2024-04-25T17:22:43Z) - Evaluation of Safety Constraints in Autonomous Navigation with Deep
Reinforcement Learning [62.997667081978825]
学習可能なナビゲーションポリシとして,セーフとアンセーフの2つを比較します。
安全なポリシは、制約をアカウントに含めますが、もう一方はそうではありません。
安全政策は、よりクリアランスの高い軌道を生成することができ(障害物によらず)、全体的な性能を犠牲にすることなく、トレーニング中に衝突を減らすことができることを示す。
論文 参考訳(メタデータ) (2023-07-27T01:04:57Z) - AI on the Road: A Comprehensive Analysis of Traffic Accidents and
Accident Detection System in Smart Cities [0.0]
本稿では,米国各地における交通事故の包括的分析について述べる。
事故検出と交通分析の課題に対処するために,交通監視カメラと行動認識システムを用いたフレームワークを提案する。
論文 参考訳(メタデータ) (2023-07-22T17:08:13Z) - Leveraging Traceability to Integrate Safety Analysis Artifacts into the
Software Development Process [51.42800587382228]
安全保証ケース(SAC)は、システムの進化中に維持することが困難である。
本稿では,ソフトウェアトレーサビリティを活用して,関連するシステムアーチファクトを安全解析モデルに接続する手法を提案する。
安全ステークホルダーがシステム変更が安全性に与える影響を分析するのに役立つように、システム変更の合理性を設計する。
論文 参考訳(メタデータ) (2023-07-14T16:03:27Z) - Camera-Radar Perception for Autonomous Vehicles and ADAS: Concepts,
Datasets and Metrics [77.34726150561087]
本研究の目的は、ADASおよび自動運転車のカメラおよびレーダーによる認識の現在のシナリオに関する研究を行うことである。
両センサと融合に関する概念と特徴を提示する。
本稿では、ディープラーニングに基づく検出とセグメンテーションタスクの概要と、車両の認識における主要なデータセット、メトリクス、課題、オープンな質問について説明する。
論文 参考訳(メタデータ) (2023-03-08T00:48:32Z) - Towards Safer Generative Language Models: A Survey on Safety Risks,
Evaluations, and Improvements [76.80453043969209]
本調査では,大規模モデルに関する安全研究の枠組みについて述べる。
まず、広範囲にわたる安全問題を導入し、その後、大型モデルの安全性評価手法を掘り下げる。
トレーニングからデプロイメントまで,大規模なモデルの安全性を高めるための戦略について検討する。
論文 参考訳(メタデータ) (2023-02-18T09:32:55Z) - SafeLight: A Reinforcement Learning Method toward Collision-free Traffic
Signal Control [5.862792724739738]
アメリカの道路事故の4分の1は、信号のタイミングの問題により交差点で発生している。
安全強化強化学習法(SafeLight)を提案する。
本手法は交通の移動性を高めながら衝突を著しく低減することができる。
論文 参考訳(メタデータ) (2022-11-20T05:09:12Z) - Network-level Safety Metrics for Overall Traffic Safety Assessment: A
Case Study [7.8191100993403495]
本稿では,道路インフラストラクチャセンサによる画像の処理による交通流の安全性評価のための,ネットワークレベルの新しい安全性指標について述べる。
安全性指標とクラッシュデータの統合解析により,代表的なネットワークレベルの安全性指標とクラッシュ頻度との洞察力のある時間的および空間的相関が明らかになった。
論文 参考訳(メタデータ) (2022-01-27T19:07:08Z) - A Review of Autonomous Road Vehicle Integrated Approaches to an
Emergency Obstacle Avoidance Maneuver [0.0]
本原稿は緊急障害物回避操作(EOAM)に不可欠なシステムに焦点を当てている。
高速道路での走行のニュアンスを考慮しつつ、関連する各システムの最先端を識別する。
論文 参考訳(メタデータ) (2021-05-20T01:11:26Z) - Inspect, Understand, Overcome: A Survey of Practical Methods for AI
Safety [54.478842696269304]
安全クリティカルなアプリケーションにディープニューラルネットワーク(DNN)を使用することは、多数のモデル固有の欠点のために困難です。
近年,これらの安全対策を目的とした最先端技術動物園が出現している。
本稿は、機械学習の専門家と安全エンジニアの両方に対処する。
論文 参考訳(メタデータ) (2021-04-29T09:54:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。