Nonlinear Permuted Granger Causality
- URL: http://arxiv.org/abs/2308.06220v2
- Date: Sun, 17 Sep 2023 20:54:38 GMT
- Title: Nonlinear Permuted Granger Causality
- Authors: Noah D. Gade and Jordan Rodu
- Abstract summary: Granger causal inference is a contentious but widespread method used in fields ranging from economics to neuroscience.
To allow for out-of-sample comparison, a measure of functional connectivity is explicitly defined using permutations of the covariate set.
Performance of the permutation method is compared to penalized variable selection, naive replacement, and omission techniques via simulation.
- Score: 0.6526824510982799
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Granger causal inference is a contentious but widespread method used in
fields ranging from economics to neuroscience. The original definition
addresses the notion of causality in time series by establishing functional
dependence conditional on a specified model. Adaptation of Granger causality to
nonlinear data remains challenging, and many methods apply in-sample tests that
do not incorporate out-of-sample predictability, leading to concerns of model
overfitting. To allow for out-of-sample comparison, a measure of functional
connectivity is explicitly defined using permutations of the covariate set.
Artificial neural networks serve as featurizers of the data to approximate any
arbitrary, nonlinear relationship, and consistent estimation of the variance
for each permutation is shown under certain conditions on the featurization
process and the model residuals. Performance of the permutation method is
compared to penalized variable selection, naive replacement, and omission
techniques via simulation, and it is applied to neuronal responses of acoustic
stimuli in the auditory cortex of anesthetized rats. Targeted use of the
Granger causal framework, when prior knowledge of the causal mechanisms in a
dataset are limited, can help to reveal potential predictive relationships
between sets of variables that warrant further study.
Related papers
- Causality Pursuit from Heterogeneous Environments via Neural Adversarial Invariance Learning [12.947265104477237]
Pursuing causality from data is a fundamental problem in scientific discovery, treatment intervention, and transfer learning.
The proposed Focused Adversial Invariant Regularization (FAIR) framework utilizes an innovative minimax optimization approach.
It is shown that FAIR-NN can find the invariant variables and quasi-causal variables under a minimal identification condition.
arXiv Detail & Related papers (2024-05-07T23:37:40Z) - DiffHybrid-UQ: Uncertainty Quantification for Differentiable Hybrid
Neural Modeling [4.76185521514135]
We introduce a novel method, DiffHybrid-UQ, for effective and efficient uncertainty propagation and estimation in hybrid neural differentiable models.
Specifically, our approach effectively discerns and quantifies both aleatoric uncertainties, arising from data noise, and epistemic uncertainties, resulting from model-form discrepancies and data sparsity.
arXiv Detail & Related papers (2023-12-30T07:40:47Z) - Selective Nonparametric Regression via Testing [54.20569354303575]
We develop an abstention procedure via testing the hypothesis on the value of the conditional variance at a given point.
Unlike existing methods, the proposed one allows to account not only for the value of the variance itself but also for the uncertainty of the corresponding variance predictor.
arXiv Detail & Related papers (2023-09-28T13:04:11Z) - Model-based causal feature selection for general response types [8.228587135343071]
Invariant causal prediction (ICP) is a method for causal feature selection which requires data from heterogeneous settings.
We develop transformation-model (TRAM) based ICP, allowing for continuous, categorical, count-type, and uninformatively censored responses.
We provide an open-source R package 'tramicp' and evaluate our approach on simulated data and in a case study investigating causal features of survival in critically ill patients.
arXiv Detail & Related papers (2023-09-22T12:42:48Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
We study causal representation learning, the task of inferring latent causal variables and their causal relations from mixtures of the variables.
Our goal is to identify both the ground truth latents and their causal graph up to a set of ambiguities which we show to be irresolvable from interventional data.
arXiv Detail & Related papers (2023-06-01T10:51:58Z) - Posterior Collapse and Latent Variable Non-identifiability [54.842098835445]
We propose a class of latent-identifiable variational autoencoders, deep generative models which enforce identifiability without sacrificing flexibility.
Across synthetic and real datasets, latent-identifiable variational autoencoders outperform existing methods in mitigating posterior collapse and providing meaningful representations of the data.
arXiv Detail & Related papers (2023-01-02T06:16:56Z) - Causal Inference via Nonlinear Variable Decorrelation for Healthcare
Applications [60.26261850082012]
We introduce a novel method with a variable decorrelation regularizer to handle both linear and nonlinear confounding.
We employ association rules as new representations using association rule mining based on the original features to increase model interpretability.
arXiv Detail & Related papers (2022-09-29T17:44:14Z) - Continuous-Time Modeling of Counterfactual Outcomes Using Neural
Controlled Differential Equations [84.42837346400151]
Estimating counterfactual outcomes over time has the potential to unlock personalized healthcare.
Existing causal inference approaches consider regular, discrete-time intervals between observations and treatment decisions.
We propose a controllable simulation environment based on a model of tumor growth for a range of scenarios.
arXiv Detail & Related papers (2022-06-16T17:15:15Z) - Modeling High-Dimensional Data with Unknown Cut Points: A Fusion
Penalized Logistic Threshold Regression [2.520538806201793]
In traditional logistic regression models, the link function is often assumed to be linear and continuous in predictors.
We consider a threshold model that all continuous features are discretized into ordinal levels, which further determine the binary responses.
We find the lasso model is well suited in the problem of early detection and prediction for chronic disease like diabetes.
arXiv Detail & Related papers (2022-02-17T04:16:40Z) - Efficient Causal Inference from Combined Observational and
Interventional Data through Causal Reductions [68.6505592770171]
Unobserved confounding is one of the main challenges when estimating causal effects.
We propose a novel causal reduction method that replaces an arbitrary number of possibly high-dimensional latent confounders.
We propose a learning algorithm to estimate the parameterized reduced model jointly from observational and interventional data.
arXiv Detail & Related papers (2021-03-08T14:29:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.