Model-based causal feature selection for general response types
- URL: http://arxiv.org/abs/2309.12833v4
- Date: Mon, 8 Jul 2024 11:46:32 GMT
- Title: Model-based causal feature selection for general response types
- Authors: Lucas Kook, Sorawit Saengkyongam, Anton Rask Lundborg, Torsten Hothorn, Jonas Peters,
- Abstract summary: Invariant causal prediction (ICP) is a method for causal feature selection which requires data from heterogeneous settings.
We develop transformation-model (TRAM) based ICP, allowing for continuous, categorical, count-type, and uninformatively censored responses.
We provide an open-source R package 'tramicp' and evaluate our approach on simulated data and in a case study investigating causal features of survival in critically ill patients.
- Score: 8.228587135343071
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Discovering causal relationships from observational data is a fundamental yet challenging task. Invariant causal prediction (ICP, Peters et al., 2016) is a method for causal feature selection which requires data from heterogeneous settings and exploits that causal models are invariant. ICP has been extended to general additive noise models and to nonparametric settings using conditional independence tests. However, the latter often suffer from low power (or poor type I error control) and additive noise models are not suitable for applications in which the response is not measured on a continuous scale, but reflects categories or counts. Here, we develop transformation-model (TRAM) based ICP, allowing for continuous, categorical, count-type, and uninformatively censored responses (these model classes, generally, do not allow for identifiability when there is no exogenous heterogeneity). As an invariance test, we propose TRAM-GCM based on the expected conditional covariance between environments and score residuals with uniform asymptotic level guarantees. For the special case of linear shift TRAMs, we also consider TRAM-Wald, which tests invariance based on the Wald statistic. We provide an open-source R package 'tramicp' and evaluate our approach on simulated data and in a case study investigating causal features of survival in critically ill patients.
Related papers
- Towards Robust Text Classification: Mitigating Spurious Correlations with Causal Learning [2.7813683000222653]
We propose the Causally Calibrated Robust ( CCR) to reduce models' reliance on spurious correlations.
CCR integrates a causal feature selection method based on counterfactual reasoning, along with an inverse propensity weighting (IPW) loss function.
We show that CCR state-of-the-art performance among methods without group labels, and in some cases, it can compete with the models that utilize group labels.
arXiv Detail & Related papers (2024-11-01T21:29:07Z) - Evaluation of uncertainty estimations for Gaussian process regression based machine learning interatomic potentials [0.0]
Uncertainty estimations for machine learning interatomic potentials are crucial to quantify the additional model error they introduce.
We consider GPR models with Coulomb and SOAP representations as inputs to predict potential energy surfaces and excitation energies of molecules.
We evaluate, how the GPR variance and ensemble-based uncertainties relate to the error and whether model performance improves by selecting the most uncertain samples from a fixed configuration space.
arXiv Detail & Related papers (2024-10-27T10:06:09Z) - Causal Feature Selection via Transfer Entropy [59.999594949050596]
Causal discovery aims to identify causal relationships between features with observational data.
We introduce a new causal feature selection approach that relies on the forward and backward feature selection procedures.
We provide theoretical guarantees on the regression and classification errors for both the exact and the finite-sample cases.
arXiv Detail & Related papers (2023-10-17T08:04:45Z) - Selective Nonparametric Regression via Testing [54.20569354303575]
We develop an abstention procedure via testing the hypothesis on the value of the conditional variance at a given point.
Unlike existing methods, the proposed one allows to account not only for the value of the variance itself but also for the uncertainty of the corresponding variance predictor.
arXiv Detail & Related papers (2023-09-28T13:04:11Z) - Nonlinear Permuted Granger Causality [0.6526824510982799]
Granger causal inference is a contentious but widespread method used in fields ranging from economics to neuroscience.
To allow for out-of-sample comparison, a measure of functional connectivity is explicitly defined using permutations of the covariate set.
Performance of the permutation method is compared to penalized variable selection, naive replacement, and omission techniques via simulation.
arXiv Detail & Related papers (2023-08-11T16:44:16Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
We study causal representation learning, the task of inferring latent causal variables and their causal relations from mixtures of the variables.
Our goal is to identify both the ground truth latents and their causal graph up to a set of ambiguities which we show to be irresolvable from interventional data.
arXiv Detail & Related papers (2023-06-01T10:51:58Z) - Breaking the Spurious Causality of Conditional Generation via Fairness
Intervention with Corrective Sampling [77.15766509677348]
Conditional generative models often inherit spurious correlations from the training dataset.
This can result in label-conditional distributions that are imbalanced with respect to another latent attribute.
We propose a general two-step strategy to mitigate this issue.
arXiv Detail & Related papers (2022-12-05T08:09:33Z) - Predicting Out-of-Domain Generalization with Neighborhood Invariance [59.05399533508682]
We propose a measure of a classifier's output invariance in a local transformation neighborhood.
Our measure is simple to calculate, does not depend on the test point's true label, and can be applied even in out-of-domain (OOD) settings.
In experiments on benchmarks in image classification, sentiment analysis, and natural language inference, we demonstrate a strong and robust correlation between our measure and actual OOD generalization.
arXiv Detail & Related papers (2022-07-05T14:55:16Z) - Invariant Ancestry Search [6.583725235299022]
We introduce the concept of minimal invariance and propose invariant ancestry search (IAS)
In its population version, IAS outputs a set which contains only ancestors of the response and is the output of ICP.
We develop scalable algorithms and perform experiments on simulated and real data.
arXiv Detail & Related papers (2022-02-02T08:28:00Z) - Training on Test Data with Bayesian Adaptation for Covariate Shift [96.3250517412545]
Deep neural networks often make inaccurate predictions with unreliable uncertainty estimates.
We derive a Bayesian model that provides for a well-defined relationship between unlabeled inputs under distributional shift and model parameters.
We show that our method improves both accuracy and uncertainty estimation.
arXiv Detail & Related papers (2021-09-27T01:09:08Z) - NestedVAE: Isolating Common Factors via Weak Supervision [45.366986365879505]
We identify the connection between the task of bias reduction and that of isolating factors common between domains.
To isolate the common factors we combine the theory of deep latent variable models with information bottleneck theory.
Two outer VAEs with shared weights attempt to reconstruct the input and infer a latent space, whilst a nested VAE attempts to reconstruct the latent representation of one image, from the latent representation of its paired image.
arXiv Detail & Related papers (2020-02-26T15:49:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.