論文の概要: Classification of All Blood Cell Images using ML and DL Models
- arxiv url: http://arxiv.org/abs/2308.06300v3
- Date: Mon, 07 Oct 2024 09:48:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-08 13:40:29.730240
- Title: Classification of All Blood Cell Images using ML and DL Models
- Title(参考訳): MLモデルとDLモデルを用いた全血球画像の分類
- Authors: Rabia Asghar, Sanjay Kumar, Paul Hynds, Abeera Mahfooz,
- Abstract要約: ヒトの血液は、主に血漿、赤血球、白血球、血小板から構成される。
栄養素を異なる臓器に輸送する上で重要な役割を担っている。
血液分析は、医師が個人の生理状態を評価するのに役立つ。
- 参考スコア(独自算出の注目度): 7.737213476933511
- License:
- Abstract: Human blood primarily comprises plasma, red blood cells, white blood cells, and platelets. It plays a vital role in transporting nutrients to different organs, where it stores essential health-related data about the human body. Blood cells are utilized to defend the body against diverse infections, including fungi, viruses, and bacteria. Hence, blood analysis can help physicians assess an individual's physiological condition. Blood cells have been sub-classified into eight groups: Neutrophils, eosinophils, basophils, lymphocytes, monocytes, immature granulocytes (promyelocytes, myelocytes, and metamyelocytes), erythroblasts, and platelets or thrombocytes on the basis of their nucleus, shape, and cytoplasm. Traditionally, pathologists and hematologists in laboratories have examined these blood cells using a microscope before manually classifying them. The manual approach is slower and more prone to human error. Therefore, it is essential to automate this process. In our paper, transfer learning with CNN pre-trained models. VGG16, VGG19, ResNet-50, ResNet-101, ResNet-152, InceptionV3, MobileNetV2, and DenseNet-20 applied to the PBC dataset's normal DIB. The overall accuracy achieved with these models lies between 91.375 and 94.72%. Hence, inspired by these pre-trained architectures, a model has been proposed to automatically classify the ten types of blood cells with increased accuracy. A novel CNN-based framework has been presented to improve accuracy. The proposed CNN model has been tested on the PBC dataset normal DIB. The outcomes of the experiments demonstrate that our CNN-based framework designed for blood cell classification attains an accuracy of 99.91% on the PBC dataset. Our proposed convolutional neural network model performs competitively when compared to earlier results reported in the literature.
- Abstract(参考訳): ヒトの血液は、主に血漿、赤血球、白血球、血小板から構成される。
栄養素を異なる臓器に輸送する上で重要な役割を担っている。
血液細胞は、菌類、ウイルス、細菌など様々な感染症から体を守るために利用される。
したがって、血液分析は、医師が個人の生理状態を評価するのに役立つ。
血液細胞は、好中球、好酸球、好酸球、好塩基球、リンパ球、単球、未成熟顆粒球(前骨髄細胞、骨髄細胞、メタ骨髄細胞)、赤血球、血小板、血小板の8つのグループに分類されている。
伝統的に、実験室の病理学者や血液学者は、手動で分類する前に顕微鏡を用いてこれらの血液細胞を調べてきた。
手動のアプローチは遅く、ヒューマンエラーを起こしやすい。
そのため、このプロセスを自動化することが不可欠である。
本稿では,CNN事前学習モデルを用いたトランスファーラーニングについて述べる。
VGG16、VGG19、ResNet-50、ResNet-101、ResNet-152、InceptionV3、MobileNetV2、DenseNet-20はPBCデータセットの通常のDIBに適用された。
これらのモデルで得られた全体的な精度は91.375から94.72%である。
したがって、これらの事前訓練されたアーキテクチャにインスパイアされたモデルが提案され、精度を高めて10種類の血液細胞を自動分類する。
CNNベースの新しいフレームワークが提示され、精度が向上した。
提案したCNNモデルはPBCデータセット正規DIB上でテストされている。
実験の結果、血液細胞分類用に設計されたCNNベースのフレームワークがPBCデータセットで99.91%の精度を達成できた。
提案する畳み込みニューラルネットワークモデルは,文献で報告された結果と比較すると,競合的に機能する。
関連論文リスト
- Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
1p/19q遺伝子の同時欠失は、低グレードグリオーマの臨床成績と関連している。
本研究の目的は,MRIを用いた畳み込みニューラルネットワークを脳がん検出に活用することである。
論文 参考訳(メタデータ) (2024-09-29T07:04:26Z) - Automatic Classification of White Blood Cell Images using Convolutional Neural Network [0.0]
ヒト免疫系には、細菌感染症、エイズ、がん、脾臓など多くの疾患の指標となる白血球(WBC)が含まれる。
伝統的に、実験室では、病理学者や血液学者が顕微鏡で血液細胞を分析し、手動で分類する。
本稿ではまず,ResNet-50,InceptionV3,VGG16,MobileNetV2などのCNNプレトレインモデルを用いて,白血球の自動分類を行った。
これらのアーキテクチャに触発されて、4種類の白血球を精度良く自動的に分類する枠組みが提案されている。
論文 参考訳(メタデータ) (2024-09-19T16:39:46Z) - Analysis of Modern Computer Vision Models for Blood Cell Classification [49.1574468325115]
この研究では、MaxVit、EfficientVit、EfficientNet、EfficientNetV2、MobileNetV3といった最先端アーキテクチャを使用して、迅速かつ正確な結果を得る。
本手法は,従来の手法の速度と精度の懸念に対処するだけでなく,血液学的解析における革新的な深層学習モデルの適用性についても検討する。
論文 参考訳(メタデータ) (2024-06-30T16:49:29Z) - Neural Cellular Automata for Lightweight, Robust and Explainable Classification of White Blood Cell Images [40.347953893940044]
ニューラルセルオートマトン(NCA)を用いた白血球分類の新しいアプローチを提案する。
NCAに基づく手法はパラメータの面で著しく小さく,ドメインシフトに対する堅牢性を示す。
その結果,NAAは画像分類に利用でき,従来の手法の課題に対処できることがわかった。
論文 参考訳(メタデータ) (2024-04-08T14:59:53Z) - BloodCell-Net: A lightweight convolutional neural network for the classification of all microscopic blood cell images of the human body [0.0]
血液の分類と測定は、様々な血液関連疾患の診断に不可欠である。
我々は, 血液スミア画像から血液細胞分類と計数を行うためのDLベースの自動システムを提案する。
赤血球,赤血球,好中球,好中球,好酸球,好酸球,リンパ球,単球,未成熟顆粒球,血小板の計9種類の血液細胞を同定した。
論文 参考訳(メタデータ) (2024-04-01T20:38:58Z) - Pathologist-Like Explanations Unveiled: an Explainable Deep Learning
System for White Blood Cell Classification [1.516937009186805]
HemaXは5つの属性を使って、病理学者のような説明を生成する、説明可能なディープニューラルネットワークベースのモデルである。
HemaXは、平均的な分類精度が81.08%、ジャカード指数が89.16%で、驚くべき結果が得られる。
論文 参考訳(メタデータ) (2023-10-20T04:59:20Z) - Tertiary Lymphoid Structures Generation through Graph-based Diffusion [54.37503714313661]
本研究では,最先端のグラフベース拡散モデルを用いて生物学的に意味のある細胞グラフを生成する。
本研究では, グラフ拡散モデルを用いて, 3次リンパ構造(TLS)の分布を正確に学習できることを示す。
論文 参考訳(メタデータ) (2023-10-10T14:37:17Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
本稿では,エンド・ツー・エンドのMB腫瘍分類を提案し,様々な入力サイズとネットワーク次元の一致した移動学習を提案する。
161ケースのデータセットを用いて、より大規模な入力解像度を持つ事前学習されたEfficientNetが、大幅な性能改善をもたらすことを実証した。
論文 参考訳(メタデータ) (2021-09-10T13:07:11Z) - Wide & Deep neural network model for patch aggregation in CNN-based
prostate cancer detection systems [51.19354417900591]
前立腺癌(PCa)は、2020年に約141万件の新規感染者と約37万5000人の死者を出した男性の死因の1つである。
自動診断を行うには、まず前立腺組織サンプルをギガピクセル分解能全スライド画像にデジタイズする。
パッチと呼ばれる小さなサブイメージが抽出され、予測され、パッチレベルの分類が得られる。
論文 参考訳(メタデータ) (2021-05-20T18:13:58Z) - Acute Lymphoblastic Leukemia Detection from Microscopic Images Using
Weighted Ensemble of Convolutional Neural Networks [4.095759108304108]
本稿では,深層畳み込みニューラルネットワーク(cnns)を用いた顕微鏡細胞画像からの全検出タスクを自動化した。
ネットワークのより優れた一般化を達成するために、様々なデータ拡張と前処理が組み込まれている。
提案する重み付きアンサンブルモデルでは, アンサンブル候補のカッパ値を重みとして, 重み付きF1スコア88.6 %, バランス付き精度86.2 %, 予備試験セットのAUC0.941を出力した。
論文 参考訳(メタデータ) (2021-05-09T18:58:48Z) - Red Blood Cell Segmentation with Overlapping Cell Separation and
Classification on Imbalanced Dataset [1.7219362335740878]
重なり合う細胞は、分類する前に複数の単一のRBCに分離しなければならない誤った予測結果を引き起こすことがある。
深層学習で複数のクラスを分類するためには、正常なサンプルが稀な疾患のサンプルよりも常に高いため、医療画像では不均衡の問題が一般的である。
本稿では,血液スミア画像から赤血球を分離・分類する新しい手法を提案する。
論文 参考訳(メタデータ) (2020-12-02T16:49:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。