論文の概要: A Semi-Supervised Generative Adversarial Network for Prediction of
Genetic Disease Outcomes
- arxiv url: http://arxiv.org/abs/2007.01200v1
- Date: Thu, 2 Jul 2020 15:35:14 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-14 13:51:59.413505
- Title: A Semi-Supervised Generative Adversarial Network for Prediction of
Genetic Disease Outcomes
- Title(参考訳): 遺伝性疾患の予後予測のための半教師付きジェネレーショナル・アドバーサリーネットワーク
- Authors: Caio Davi and Ulisses Braga-Neto
- Abstract要約: 本稿では, 遺伝的な遺伝的データセットを作成するために, gGAN (Generative Adversarial Networks) を導入する。
我々のゴールは、遺伝子プロファイルだけで病気の重篤な形態を発達させる新しい個人の正当性を決定することである。
提案モデルは自己認識型であり、ネットワークがトレーニングされたデータと十分に互換性のある新しい遺伝子プロファイルを決定することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: For most diseases, building large databases of labeled genetic data is an
expensive and time-demanding task. To address this, we introduce genetic
Generative Adversarial Networks (gGAN), a semi-supervised approach based on an
innovative GAN architecture to create large synthetic genetic data sets
starting with a small amount of labeled data and a large amount of unlabeled
data. Our goal is to determine the propensity of a new individual to develop
the severe form of the illness from their genetic profile alone. The proposed
model achieved satisfactory results using real genetic data from different
datasets and populations, in which the test populations may not have the same
genetic profiles. The proposed model is self-aware and capable of determining
whether a new genetic profile has enough compatibility with the data on which
the network was trained and is thus suitable for prediction. The code and
datasets used can be found at https://github.com/caio-davi/gGAN.
- Abstract(参考訳): ほとんどの病気にとって、ラベル付き遺伝データの大規模なデータベースの構築は費用と時間を要する作業である。
この問題を解決するために、GANアーキテクチャに基づく半教師付きアプローチであるGGAN(Generative Adversarial Networks)を導入し、少量のラベル付きデータと大量のラベルなしデータから始まる大規模な合成遺伝的データセットを作成する。
我々の目標は、遺伝的プロファイルだけで、病気の重篤な形態を発達させる新しい個人の傾向を決定することである。
提案モデルでは,異なるデータセットと個体群から得られた実際の遺伝データを用いて良好な結果を得た。
提案モデルは自己認識可能であり,新たな遺伝的プロファイルがネットワークがトレーニングされたデータと十分に互換性があるかどうかを判定することができる。
使用されるコードとデータセットはhttps://github.com/caio-davi/gGAN.comで見ることができる。
関連論文リスト
- Weighted Diversified Sampling for Efficient Data-Driven Single-Cell Gene-Gene Interaction Discovery [56.622854875204645]
本稿では,遺伝子・遺伝子相互作用の探索に先進的なトランスフォーマーモデルを活用する,データ駆動型計算ツールを活用した革新的なアプローチを提案する。
新たな重み付き多様化サンプリングアルゴリズムは、データセットのたった2パスで、各データサンプルの多様性スコアを算出する。
論文 参考訳(メタデータ) (2024-10-21T03:35:23Z) - GeSubNet: Gene Interaction Inference for Disease Subtype Network Generation [29.93863082158739]
知識データベースから遺伝子機能ネットワークを取得することは、疾患ネットワークとサブタイプ固有のバリエーションのミスマッチによる課題である。
本稿では、異なる疾患サブタイプを区別しながら、遺伝子相互作用を予測できる統一表現を学習するGeSubNetを提案する。
論文 参考訳(メタデータ) (2024-10-17T02:58:57Z) - Efficient and Scalable Fine-Tune of Language Models for Genome
Understanding [49.606093223945734]
textscLanguage prefix ftextscIne-tuning for textscGentextscOmes。
DNA基盤モデルとは異なり、textscLingoは自然言語基盤モデルの文脈的手がかりを戦略的に活用している。
textscLingoはさらに、適応的なランクサンプリング方法により、下流の細調整タスクを数多く許容する。
論文 参考訳(メタデータ) (2024-02-12T21:40:45Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
我々は,細胞間のトポロジ的特徴を効率的に捉えるために,注目度の高いグラフオートエンコーダを開発した。
クラスタリング過程において,両情報の集合を統合し,細胞と遺伝子の特徴を再構成し,識別的表現を生成する。
本研究は、細胞の特徴と分布に関する知見を高め、疾患の早期診断と治療の基礎となる。
論文 参考訳(メタデータ) (2023-11-28T09:14:55Z) - Genetic heterogeneity analysis using genetic algorithm and network
science [2.6166087473624318]
ゲノムワイド・アソシエーション(GWAS)は、疾患に感受性のある遺伝的変数を同定することができる。
遺伝的効果に絡み合った遺伝的変数は、しばしば低い効果サイズを示す。
本稿では,FCSNet(Feature Co-Selection Network)という,GWASのための新しい特徴選択機構を提案する。
論文 参考訳(メタデータ) (2023-08-12T01:28:26Z) - Data-IQ: Characterizing subgroups with heterogeneous outcomes in tabular
data [81.43750358586072]
本稿では,サンプルをサブグループに体系的に階層化するフレームワークであるData-IQを提案する。
実世界の4つの医療データセットに対するData-IQの利点を実験的に実証した。
論文 参考訳(メタデータ) (2022-10-24T08:57:55Z) - Isoform Function Prediction Using a Deep Neural Network [9.507435239304591]
研究によると、ヒトのマルチエクソン遺伝子のうち95%以上が代替スプライシングを受けている。
代替スプライシングは、ヒトの健康と病気において重要な役割を果たす。
このプロジェクトは条件付きデータとmRNA配列、発現プロファイル、遺伝子グラフなどの貴重な情報を使用する。
論文 参考訳(メタデータ) (2022-08-05T09:31:25Z) - SimpleChrome: Encoding of Combinatorial Effects for Predicting Gene
Expression [8.326669256957352]
遺伝子のヒストン修飾表現を学習するディープラーニングモデルであるSimpleChromeを紹介します。
このモデルから得られた特徴により、遺伝子間相互作用の潜在効果と標的遺伝子の発現に対する直接遺伝子調節をよりよく理解することができます。
論文 参考訳(メタデータ) (2020-12-15T23:30:36Z) - A deep learning classifier for local ancestry inference [63.8376359764052]
局所祖先推論は、個人のゲノムの各セグメントの祖先を特定する。
我々は,エンコーダ・デコーダアーキテクチャを備えた深層畳み込みニューラルネットワークを用いた新しいLAIツールを開発した。
我々は,既存のゴールド標準ツール RFMix とほぼ同等の精度で,ゼロショットタスクとしてアドミキシングを学習できることを実証した。
論文 参考訳(メタデータ) (2020-11-04T00:42:01Z) - Expectile Neural Networks for Genetic Data Analysis of Complex Diseases [3.0088453915399747]
本研究では、複雑な疾患の遺伝子データ解析のための予測型ニューラルネットワーク(ENN)法を開発した。
期待回帰と同様に、ERNは遺伝子変異と疾患の表現型との関係を包括的に把握する。
提案手法は,遺伝子変異と疾患表現型との間に複雑な関係がある場合,既存の予測回帰よりも優れていた。
論文 参考訳(メタデータ) (2020-10-26T21:07:40Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。