論文の概要: SAILOR: Structural Augmentation Based Tail Node Representation Learning
- arxiv url: http://arxiv.org/abs/2308.06801v1
- Date: Sun, 13 Aug 2023 16:04:03 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-15 15:15:57.464144
- Title: SAILOR: Structural Augmentation Based Tail Node Representation Learning
- Title(参考訳): SAILOR: 構造拡張に基づくTailノード表現学習
- Authors: Jie Liao, Jintang Li, Liang Chen, Bingzhe Wu, Yatao Bian, Zibin Zheng
- Abstract要約: グラフニューラルネットワーク(GNN)は近年,グラフの表現学習において最先端のパフォーマンスを実現している。
実世界のシナリオにおけるグラフのほとんどは、ノードの次数における長い尾の分布、すなわちグラフ内のノードの大部分は、わずかに連結されたエッジを持つ尾のノードである。
本稿では,SAILORと呼ばれる構造拡張に基づくTaIL nOde表現学習フレームワークを提案する。
- 参考スコア(独自算出の注目度): 49.19653803667422
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) have achieved state-of-the-art performance in
representation learning for graphs recently. However, the effectiveness of
GNNs, which capitalize on the key operation of message propagation, highly
depends on the quality of the topology structure. Most of the graphs in
real-world scenarios follow a long-tailed distribution on their node degrees,
that is, a vast majority of the nodes in the graph are tail nodes with only a
few connected edges. GNNs produce inferior node representations for tail nodes
since they lack structural information. In the pursuit of promoting the
expressiveness of GNNs for tail nodes, we explore how the deficiency of
structural information deteriorates the performance of tail nodes and propose a
general Structural Augmentation based taIL nOde Representation learning
framework, dubbed as SAILOR, which can jointly learn to augment the graph
structure and extract more informative representations for tail nodes.
Extensive experiments on public benchmark datasets demonstrate that SAILOR can
significantly improve the tail node representations and outperform the
state-of-the-art baselines.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は最近,グラフの表現学習において最先端のパフォーマンスを達成した。
しかし, メッセージ伝搬の重要な操作を活かしたGNNの有効性は, トポロジ構造の品質に大きく依存する。
実世界のシナリオにおけるグラフのほとんどは、ノードの次数における長い尾の分布、すなわちグラフ内のノードの大部分は、わずかに連結されたエッジを持つ尾のノードである。
GNNは構造情報を欠いているため、テールノードに対して下位ノード表現を生成する。
尾ノードに対するGNNの表現性を追求するため,構造情報の欠如が尾ノードの性能を悪化させるかを検討するとともに,SAILORと呼ばれる構造拡張に基づくTaIL nOde表現学習フレームワークを提案する。
公開ベンチマークデータセットに関する大規模な実験は、SAILORがテールノード表現を大幅に改善し、最先端のベースラインを上回る性能を発揮することを示した。
関連論文リスト
- MDS-GNN: A Mutual Dual-Stream Graph Neural Network on Graphs with Incomplete Features and Structure [8.00268216176428]
グラフニューラルネットワーク(GNN)は、グラフ構造化データから表現を分析し学習するための強力なツールとして登場した。
GNNの卓越した性能にとって重要な前提条件は、完全なグラフ情報の提供である。
本研究では,特徴と構造間の相互利益学習を実装した相互二重ストリームグラフニューラルネットワーク(MDS-GNN)を提案する。
論文 参考訳(メタデータ) (2024-08-09T03:42:56Z) - Harnessing Collective Structure Knowledge in Data Augmentation for Graph Neural Networks [25.12261412297796]
グラフニューラルネットワーク(GNN)は,グラフ表現学習において最先端のパフォーマンスを達成した。
我々は新しいアプローチ、すなわち集合構造知識強化グラフニューラルネットワーク(CoS-GNN)を提案する。
論文 参考訳(メタデータ) (2024-05-17T08:50:00Z) - Self-Attention Empowered Graph Convolutional Network for Structure
Learning and Node Embedding [5.164875580197953]
グラフ構造化データの表現学習では、多くの人気のあるグラフニューラルネットワーク(GNN)が長距離依存をキャプチャできない。
本稿では,自己注意型グラフ畳み込みネットワーク(GCN-SA)と呼ばれる新しいグラフ学習フレームワークを提案する。
提案手法はノードレベルの表現学習において例外的な一般化能力を示す。
論文 参考訳(メタデータ) (2024-03-06T05:00:31Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
グラフニューラルネットワーク(GNN)は、複雑な構造を持つグラフ上での表現学習の堅牢性を示す。
ノードのより包括的な埋め込み表現を得るために、Decoupled Graph Neural Networks (DGNN)と呼ばれる新しいGNNフレームワークが導入された。
複数のグラフベンチマークデータセットを用いて、ノード分類タスクにおけるDGNNの優位性を検証した。
論文 参考訳(メタデータ) (2024-01-28T06:43:13Z) - GraphRARE: Reinforcement Learning Enhanced Graph Neural Network with Relative Entropy [21.553180564868306]
GraphRAREはノード相対エントロピーと深層強化学習に基づいて構築されたフレームワークである。
革新的なノード相対エントロピーは、ノードペア間の相互情報を測定するために使用される。
グラフトポロジを最適化するために,深層強化学習に基づくアルゴリズムを開発した。
論文 参考訳(メタデータ) (2023-12-15T11:30:18Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
本稿では,任意のノード間のノード信号を効率的に伝搬する全ペアメッセージパッシング方式を提案する。
効率的な計算は、カーナライズされたGumbel-Softmax演算子によって実現される。
グラフ上のノード分類を含む様々なタスクにおいて,本手法の有望な有効性を示す実験を行った。
論文 参考訳(メタデータ) (2023-06-14T09:21:15Z) - Seq-HGNN: Learning Sequential Node Representation on Heterogeneous Graph [57.2953563124339]
本稿では,シーケンシャルノード表現,すなわちSeq-HGNNを用いた新しい異種グラフニューラルネットワークを提案する。
Heterogeneous Graph Benchmark (HGB) と Open Graph Benchmark (OGB) の4つの広く使われているデータセットについて広範な実験を行った。
論文 参考訳(メタデータ) (2023-05-18T07:27:18Z) - Structure Enhanced Graph Neural Networks for Link Prediction [6.872826041648584]
リンク予測のための構造拡張グラフニューラルネットワーク(SEG)を提案する。
SEGは、ターゲットノードの周囲の位相情報を通常のGNNモデルに組み込む。
OGBリンク予測データセットの実験は、SEGが最先端の結果を達成することを示す。
論文 参考訳(メタデータ) (2022-01-14T03:49:30Z) - Uniting Heterogeneity, Inductiveness, and Efficiency for Graph
Representation Learning [68.97378785686723]
グラフニューラルネットワーク(GNN)は,グラフ上のノード表現学習の性能を大幅に向上させた。
GNNの過半数クラスは均質グラフのためにのみ設計されており、より有益な異種グラフに劣る適応性をもたらす。
本稿では,低次ノードと高次ノードの両方のエッジに付随するヘテロジニアスなノード特徴をパッケージ化する,新しい帰納的メタパスフリーメッセージパッシング方式を提案する。
論文 参考訳(メタデータ) (2021-04-04T23:31:39Z) - Graph Inference Learning for Semi-supervised Classification [50.55765399527556]
半教師付きノード分類の性能を高めるためのグラフ推論学習フレームワークを提案する。
推論過程の学習には,トレーニングノードから検証ノードへの構造関係のメタ最適化を導入する。
4つのベンチマークデータセットの総合的な評価は、最先端の手法と比較して提案したGILの優位性を示している。
論文 参考訳(メタデータ) (2020-01-17T02:52:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。