論文の概要: Data Race Detection Using Large Language Models
- arxiv url: http://arxiv.org/abs/2308.07505v2
- Date: Tue, 3 Oct 2023 06:09:18 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-05 07:45:06.154357
- Title: Data Race Detection Using Large Language Models
- Title(参考訳): 大規模言語モデルを用いたデータ競合検出
- Authors: Le Chen, Xianzhong Ding, Murali Emani, Tristan Vanderbruggen, Pei-hung
Lin, Chuanhua Liao
- Abstract要約: 大規模言語モデル(LLM)は、高性能コンピューティングプログラムの分析と最適化を容易にする代替戦略である。
本稿では,工学的手法と微調整的手法を併用した,LLMに基づく新しいデータ競合検出手法を提案する。
- 参考スコア(独自算出の注目度): 1.0013600887991827
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) are demonstrating significant promise as an
alternate strategy to facilitate analyses and optimizations of high-performance
computing programs, circumventing the need for resource-intensive manual tool
creation. In this paper, we explore a novel LLM-based data race detection
approach combining prompting engineering and fine-tuning techniques. We create
a dedicated dataset named DRB-ML, which is derived from DataRaceBench, with
fine-grain labels showing the presence of data race pairs and their associated
variables, line numbers, and read/write information. DRB-ML is then used to
evaluate representative LLMs and fine-tune open-source ones. Our experiment
shows that LLMs can be a viable approach to data race detection. However, they
still cannot compete with traditional data race detection tools when we need
detailed information about variable pairs causing data races.
- Abstract(参考訳): 大規模言語モデル(llm)は、リソース集約的な手動ツール作成の必要性を回避し、高性能コンピューティングプログラムの分析と最適化を容易にする代替戦略として、大きな期待を示している。
本稿では,技術と微調整を融合したllmに基づく新しいデータ競合検出手法について検討する。
我々はDataRaceBenchから派生したDRB-MLという専用のデータセットを作成し、データレースペアとその関連する変数、行番号、読み書き情報を示す微粒なラベルを付ける。
DRB-MLは、代表的なLCMとファインチューンオープンソースの評価に使用される。
実験の結果,LLMはデータ競合検出に有効な手法であることがわかった。
しかし、変数ペアに関する詳細な情報が必要な場合、従来のデータ競合検出ツールと競合することはできません。
関連論文リスト
- Formality is Favored: Unraveling the Learning Preferences of Large Language Models on Data with Conflicting Knowledge [55.65162959527848]
大規模言語モデルは、多くの知識集約的なタスクにおいて優れたパフォーマンスを示している。
しかし、事前学習データには誤解を招く傾向があり、矛盾する情報も含まれている。
本研究では,LLMの学習嗜好を,矛盾する知識を持つデータに対して体系的に分析する。
論文 参考訳(メタデータ) (2024-10-07T06:49:41Z) - On Unsupervised Prompt Learning for Classification with Black-box Language Models [71.60563181678323]
大規模言語モデル(LLM)は、テキスト形式学習問題において顕著な成功を収めた。
LLMは、熟練した人間のアノテータよりも品質の高いデータセットをラベル付けすることができる。
本稿では,ブラックボックス LLM を用いた分類のための教師なしのプロンプト学習を提案する。
論文 参考訳(メタデータ) (2024-10-04T03:39:28Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - Are you still on track!? Catching LLM Task Drift with Activations [55.75645403965326]
タスクドリフトは攻撃者がデータを流出させたり、LLMの出力に影響を与えたりすることを可能にする。
そこで, 簡易線形分類器は, 分布外テストセット上で, ほぼ完全なLOC AUCでドリフトを検出することができることを示す。
このアプローチは、プロンプトインジェクション、ジェイルブレイク、悪意のある指示など、目に見えないタスクドメインに対して驚くほどうまく一般化する。
論文 参考訳(メタデータ) (2024-06-02T16:53:21Z) - DataAgent: Evaluating Large Language Models' Ability to Answer Zero-Shot, Natural Language Queries [0.0]
OpenAIのGPT-3.5をLanguage Data Scientist(LDS)として評価する
このモデルは、さまざまなベンチマークデータセットでテストされ、そのパフォーマンスを複数の標準で評価した。
論文 参考訳(メタデータ) (2024-03-29T22:59:34Z) - SEED: Domain-Specific Data Curation With Large Language Models [22.54280367957015]
LLM-as-compilerアプローチであるSEEDは,Large Language Models(LLM)を介して,ドメイン固有のデータキュレーションソリューションを自動的に生成する。
SEEDは、4つのLCMアシストモジュールから自動的に選択し、そのタスクに最も適したハイブリッド実行パイプラインを形成する。
論文 参考訳(メタデータ) (2023-10-01T17:59:20Z) - MLLM-DataEngine: An Iterative Refinement Approach for MLLM [62.30753425449056]
本稿では,データ生成,モデルトレーニング,評価を橋渡しする新しいクローズドループシステムを提案する。
各ループ内で、MLLM-DataEngineはまず評価結果に基づいてモデルの弱点を分析する。
ターゲットとして,異なる種類のデータの比率を調整する適応型バッドケースサンプリングモジュールを提案する。
品質については、GPT-4を用いて、各データタイプで高品質なデータを生成する。
論文 参考訳(メタデータ) (2023-08-25T01:41:04Z) - DataRaceBench V1.4.1 and DataRaceBench-ML V0.1: Benchmark Suites for
Data Race Detection [23.240375422302666]
データレースは、プログラムの正確性に悪影響を及ぼすため、マルチスレッド並列アプリケーションに重大な脅威をもたらす。
オープンソースのベンチマークスイートDataRaceBenchは、これらのデータ競合検出ツールを、システマティックで測定可能な方法で評価するために作られている。
本稿では,DataRaceBench-ML (DRB-ML) という名前の派生データセットを紹介する。
論文 参考訳(メタデータ) (2023-08-16T16:23:13Z) - AnnoLLM: Making Large Language Models to Be Better Crowdsourced Annotators [98.11286353828525]
GPT-3.5シリーズのモデルは、様々なNLPタスクにまたがる顕著な少数ショットとゼロショットの能力を示している。
本稿では,2段階のアプローチを取り入れたAnnoLLMを提案する。
我々はAnnoLLMを用いた対話型情報検索データセットを構築した。
論文 参考訳(メタデータ) (2023-03-29T17:03:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。