論文の概要: Maat: Performance Metric Anomaly Anticipation for Cloud Services with
Conditional Diffusion
- arxiv url: http://arxiv.org/abs/2308.07676v1
- Date: Tue, 15 Aug 2023 09:50:15 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-23 14:08:33.714489
- Title: Maat: Performance Metric Anomaly Anticipation for Cloud Services with
Conditional Diffusion
- Title(参考訳): maat: 条件付き拡散を伴うクラウドサービスのパフォーマンスメトリック異常予測
- Authors: Cheryl Lee, Tianyi Yang, Zhuangbin Chen, Yuxin Su, Michael R. Lyu
- Abstract要約: 既存の異常検出技術は、リアルタイム検出のみに焦点を合わせており、異常が発生したら即座に異常警報が発行される。
本稿では,クラウドサービスのパフォーマンス指標の異常予測に対処する最初の試みであるMaatを提案する。
Maatは、予測値の予測と予測値の異常検出からなる、新しい2段階の予測パラダイムを採用している。
- 参考スコア(独自算出の注目度): 32.86745044103766
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ensuring the reliability and user satisfaction of cloud services necessitates
prompt anomaly detection followed by diagnosis.
Existing techniques for anomaly detection focus solely on real-time
detection, meaning that anomaly alerts are issued as soon as anomalies occur.
However, anomalies can propagate and escalate into failures, making
faster-than-real-time anomaly detection highly desirable for expediting
downstream analysis and intervention.
This paper proposes Maat, the first work to address anomaly anticipation of
performance metrics in cloud services.
Maat adopts a novel two-stage paradigm for anomaly anticipation, consisting
of metric forecasting and anomaly detection on forecasts.
The metric forecasting stage employs a conditional denoising diffusion model
to enable multi-step forecasting in an auto-regressive manner.
The detection stage extracts anomaly-indicating features based on domain
knowledge and applies isolation forest with incremental learning to detect
upcoming anomalies.
Thus, our method can uncover anomalies that better conform to human
expertise.
Evaluation on three publicly available datasets demonstrates that Maat can
anticipate anomalies faster than real-time comparatively or more effectively
compared with state-of-the-art real-time anomaly detectors.
We also present cases highlighting Maat's success in forecasting abnormal
metrics and discovering anomalies.
- Abstract(参考訳): クラウドサービスの信頼性とユーザ満足度を確保するには、迅速な異常検出と診断が必要である。
既存の異常検出技術はリアルタイム検出のみに焦点を当てており、異常発生と同時に異常アラートが発行される。
しかし、異常は失敗へと伝播しエスカレートし、下流の分析と介入の迅速化に非常に望ましいリアルタイム異常検出を実現する。
本稿では,クラウドサービスのパフォーマンス指標の異常予測に対処する最初の試みであるMaatを提案する。
Maatは、予測の予測と予測の異常検出からなる、新しい2段階の予測パラダイムを採用する。
計量予測段階は、条件付き偏差拡散モデルを用いて、自己回帰的な多段階予測を可能にする。
検出段階は、ドメイン知識に基づいて異常を示す特徴を抽出し、インクリメンタル学習を伴う分離フォレストを適用し、今後の異常を検出する。
これにより,人間の専門知識に適合した異常を明らかにすることができる。
3つの公開データセットの評価により、Maatは、最先端のリアルタイム異常検知器と比較して、比較的効率的に、より高速に異常を予測できることを示した。
また,異常指標の予測と異常発見にMaatが成功した事例も紹介した。
関連論文リスト
- Adversarially Robust Industrial Anomaly Detection Through Diffusion Model [23.97654469255749]
そこで本研究では, 拡散モデルを用いて, 逆解析器と逆解析器の両方を動作させることができる, 簡易かつ効果的な逆解析手法である textitAdvRAD を提案する。
提案手法は,産業用異常検出ベンチマークデータセットの最先端手法と同等に強い異常検出性能を維持しつつ,優れた(認証された)対向性を示す。
論文 参考訳(メタデータ) (2024-08-09T03:25:19Z) - Uncertainty-aware Evaluation of Auxiliary Anomalies with the Expected Anomaly Posterior [17.499560292835]
異常検出は、期待通りに振る舞わない例を特定するタスクである。
合成異常は品質が悪いかもしれない。
補助異常の品質を定量化する既存の方法はない。
論文 参考訳(メタデータ) (2024-05-22T14:43:29Z) - AnomalyDiffusion: Few-Shot Anomaly Image Generation with Diffusion Model [59.08735812631131]
製造業において異常検査が重要な役割を担っている。
既存の異常検査手法は、異常データが不足しているため、その性能に制限がある。
本稿では,新しい拡散型マイクロショット異常生成モデルであるAnomalyDiffusionを提案する。
論文 参考訳(メタデータ) (2023-12-10T05:13:40Z) - MSFlow: Multi-Scale Flow-based Framework for Unsupervised Anomaly
Detection [124.52227588930543]
教師なし異常検出(UAD)は多くの研究の関心を集め、幅広い応用を推進している。
不明瞭だが強力な統計モデルである正規化フローは、教師なしの方法で異常検出と局所化に適している。
非対称な並列フローと融合フローからなるMSFlowと呼ばれる新しいマルチスケールフローベースフレームワークを提案する。
我々のMSFlowは、検出AUORCスコアが99.7%、ローカライゼーションAUCROCスコアが98.8%、プロスコアが97.1%の新たな最先端技術を実現している。
論文 参考訳(メタデータ) (2023-08-29T13:38:35Z) - Precursor-of-Anomaly Detection for Irregular Time Series [31.73234935455713]
本稿では,新しいタイプの異常検出法であるPrecursor-of-Anomaly(PoA)について述べる。
両問題を同時に解くために,ニューラルネットワークとマルチタスク学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-06-27T14:10:09Z) - AGAD: Adversarial Generative Anomaly Detection [12.68966318231776]
異常検出は,異常の多様性と大規模異常データ取得の困難さにより異常の欠如に悩まされた。
本稿では,自己コントラストに基づく異常検出パラダイムであるAdversarial Generative Anomaly Detection (AGAD)を提案する。
本手法は,教師付きおよび半教師付き両方の異常検出シナリオに対して擬似異常データを生成する。
論文 参考訳(メタデータ) (2023-04-09T10:40:02Z) - Are we certain it's anomalous? [57.729669157989235]
時系列における異常検出は、高度に非線形な時間的相関のため、異常は稀であるため、複雑なタスクである。
本稿では,異常検出(HypAD)におけるハイパボリック不確実性の新しい利用法を提案する。
HypADは自己指導で入力信号を再構築する。
論文 参考訳(メタデータ) (2022-11-16T21:31:39Z) - Catching Both Gray and Black Swans: Open-set Supervised Anomaly
Detection [90.32910087103744]
ラベル付き異常な例は、多くの現実世界のアプリケーションでよく見られる。
これらの異常例は、アプリケーション固有の異常について貴重な知識を提供する。
トレーニング中に見られる異常は、可能なあらゆる種類の異常を説明できないことが多い。
本稿では,オープンセット型教師付き異常検出に取り組む。
論文 参考訳(メタデータ) (2022-03-28T05:21:37Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
本稿では,弱い教師付き異常検出フレームワークを導入し,検出モデルを訓練する。
提案手法は,ラベル付き異常と事前確率を活用することにより,識別正規性を学習する。
我々のモデルはサンプル効率が高く頑健であり、クローズドセットとオープンセットの両方の設定において最先端の競合手法よりもはるかに優れている。
論文 参考訳(メタデータ) (2021-08-01T14:33:17Z) - Understanding the Effect of Bias in Deep Anomaly Detection [15.83398707988473]
異常検出はラベル付き異常データの不足のため、機械学習においてユニークな課題となる。
最近の研究は、追加のラベル付き異常サンプルによる深部異常検出モデルのトレーニングを増強することで、このような問題を緩和しようとするものである。
本稿では,異常検出に対するバイアス付き異常集合の効果を理解することを目的とする。
論文 参考訳(メタデータ) (2021-05-16T03:55:02Z) - Deep Weakly-supervised Anomaly Detection [118.55172352231381]
ペアワイズ関係予測ネットワーク(PReNet)は、ペアワイズ関係の特徴と異常スコアを学習する。
PReNetは、学習したペアの異常パターンに適合する見知らぬ異常を検出できる。
12の実世界のデータセットに対する実証的な結果から、PReNetは目に見えない異常や異常を検知する9つの競合する手法を著しく上回っている。
論文 参考訳(メタデータ) (2019-10-30T00:40:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。