Dyadic Reinforcement Learning
- URL: http://arxiv.org/abs/2308.07843v6
- Date: Mon, 12 Aug 2024 02:40:24 GMT
- Title: Dyadic Reinforcement Learning
- Authors: Shuangning Li, Lluis Salvat Niell, Sung Won Choi, Inbal Nahum-Shani, Guy Shani, Susan Murphy,
- Abstract summary: Mobile health aims to enhance health outcomes by delivering interventions to individuals as they go about their daily life.
Dyadic RL is an online reinforcement learning algorithm designed to personalize intervention delivery based on contextual factors and past responses.
We demonstrate dyadic RL's empirical performance through simulation studies on both toy scenarios and on a realistic test bed constructed from data collected in a mobile health study.
- Score: 7.105179961841919
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mobile health aims to enhance health outcomes by delivering interventions to individuals as they go about their daily life. The involvement of care partners and social support networks often proves crucial in helping individuals managing burdensome medical conditions. This presents opportunities in mobile health to design interventions that target the dyadic relationship -- the relationship between a target person and their care partner -- with the aim of enhancing social support. In this paper, we develop dyadic RL, an online reinforcement learning algorithm designed to personalize intervention delivery based on contextual factors and past responses of a target person and their care partner. Here, multiple sets of interventions impact the dyad across multiple time intervals. The developed dyadic RL is Bayesian and hierarchical. We formally introduce the problem setup, develop dyadic RL and establish a regret bound. We demonstrate dyadic RL's empirical performance through simulation studies on both toy scenarios and on a realistic test bed constructed from data collected in a mobile health study.
Related papers
- Graph-Augmented LLMs for Personalized Health Insights: A Case Study in Sleep Analysis [2.303486126296845]
Large Language Models (LLMs) have shown promise in delivering interactive health advice.
Traditional methods like Retrieval-Augmented Generation (RAG) and fine-tuning often fail to fully utilize the complex, multi-dimensional, and temporally relevant data.
This paper introduces a graph-augmented LLM framework designed to significantly enhance the personalization and clarity of health insights.
arXiv Detail & Related papers (2024-06-24T01:22:54Z) - A Toolbox for Surfacing Health Equity Harms and Biases in Large Language Models [20.11590976578911]
Large language models (LLMs) hold promise to serve complex health information needs but also have the potential to introduce harm and exacerbate health disparities.
Reliably evaluating equity-related model failures is a critical step toward developing systems that promote health equity.
We present resources and methodologies for surfacing biases with potential to precipitate equity-related harms in long-form, LLM-generated answers to medical questions.
arXiv Detail & Related papers (2024-03-18T17:56:37Z) - Defining Effective Engagement For Enhancing Cancer Patients' Well-being with Mobile Digital Behavior Change Interventions [0.25296764467138544]
Digital Behavior Change Interventions (DBCIs) are supporting development of new health behaviors.
This study aims to define effective engagement with DBCIs for supporting cancer patients in enhancing their quality of life.
arXiv Detail & Related papers (2024-03-18T17:43:40Z) - Large Language Model-based Human-Agent Collaboration for Complex Task
Solving [94.3914058341565]
We introduce the problem of Large Language Models (LLMs)-based human-agent collaboration for complex task-solving.
We propose a Reinforcement Learning-based Human-Agent Collaboration method, ReHAC.
This approach includes a policy model designed to determine the most opportune stages for human intervention within the task-solving process.
arXiv Detail & Related papers (2024-02-20T11:03:36Z) - Agent-Based Model: Simulating a Virus Expansion Based on the Acceptance
of Containment Measures [65.62256987706128]
Compartmental epidemiological models categorize individuals based on their disease status.
We propose an ABM architecture that combines an adapted SEIRD model with a decision-making model for citizens.
We illustrate the designed model by examining the progression of SARS-CoV-2 infections in A Coruna, Spain.
arXiv Detail & Related papers (2023-07-28T08:01:05Z) - A Self-supervised Framework for Improved Data-Driven Monitoring of
Stress via Multi-modal Passive Sensing [7.084068935028644]
We propose a multi-modal semi-supervised framework for tracking physiological precursors of the stress response.
Our methodology enables utilizing multi-modal data of differing domains and resolutions from wearable devices.
We perform training experiments using a corpus of real-world data on perceived stress.
arXiv Detail & Related papers (2023-03-24T20:34:46Z) - pH-RL: A personalization architecture to bring reinforcement learning to
health practice [6.587485396428361]
This paper presents pH-RL, a general RL architecture for personalization to bring RL to health practice.
We implement our open-source RL architecture and integrate it with the MoodBuster mobile application for mental health.
Our experimental results show that the developed policies learn to select appropriate actions consistently using only a few days' worth of data.
arXiv Detail & Related papers (2021-03-29T19:38:04Z) - FLOP: Federated Learning on Medical Datasets using Partial Networks [84.54663831520853]
COVID-19 Disease due to the novel coronavirus has caused a shortage of medical resources.
Different data-driven deep learning models have been developed to mitigate the diagnosis of COVID-19.
The data itself is still scarce due to patient privacy concerns.
We propose a simple yet effective algorithm, named textbfFederated textbfL textbfon Medical datasets using textbfPartial Networks (FLOP)
arXiv Detail & Related papers (2021-02-10T01:56:58Z) - MET: Multimodal Perception of Engagement for Telehealth [52.54282887530756]
We present MET, a learning-based algorithm for perceiving a human's level of engagement from videos.
We release a new dataset, MEDICA, for mental health patient engagement detection.
arXiv Detail & Related papers (2020-11-17T15:18:38Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
We propose a novel self-attention mechanism that captures the contextual dependency and temporal relationships within a patient's healthcare journey.
An end-to-end bidirectional temporal encoder network (BiteNet) then learns representations of the patient's journeys.
We have evaluated the effectiveness of our methods on two supervised prediction and two unsupervised clustering tasks with a real-world EHR dataset.
arXiv Detail & Related papers (2020-09-24T00:42:36Z) - Effectiveness and Compliance to Social Distancing During COVID-19 [72.94965109944707]
We use a detailed set of mobility data to evaluate the impact that stay-at-home orders had on the spread of COVID-19 in the US.
We show that there is a unidirectional Granger causality, from the median percentage of time spent daily at home to the daily number of COVID-19-related deaths with a lag of 2 weeks.
arXiv Detail & Related papers (2020-06-23T03:36:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.