論文の概要: Freshness or Accuracy, Why Not Both? Addressing Delayed Feedback via
Dynamic Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2308.08071v1
- Date: Tue, 15 Aug 2023 23:49:07 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-17 15:23:49.873074
- Title: Freshness or Accuracy, Why Not Both? Addressing Delayed Feedback via
Dynamic Graph Neural Networks
- Title(参考訳): 新鮮さか正確さ 両方じゃないの?
動的グラフニューラルネットワークによる遅延フィードバックの対応
- Authors: Xiaolin Zheng, Zhongyu Wang, Chaochao Chen, Feng Zhu and Jiashu Qian
- Abstract要約: 遅延フィードバック問題は、変換率を予測する上で最も困難な課題の1つである。
動的グラフニューラルネットワーク(DGDFEM)による遅延フィードバックモデリングを提案する。
データパイプラインの作成、動的グラフの構築、CVR予測モデルのトレーニングという3つのステージが含まれている。
- 参考スコア(独自算出の注目度): 23.952923773407043
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The delayed feedback problem is one of the most pressing challenges in
predicting the conversion rate since users' conversions are always delayed in
online commercial systems. Although new data are beneficial for continuous
training, without complete feedback information, i.e., conversion labels,
training algorithms may suffer from overwhelming fake negatives. Existing
methods tend to use multitask learning or design data pipelines to solve the
delayed feedback problem. However, these methods have a trade-off between data
freshness and label accuracy. In this paper, we propose Delayed Feedback
Modeling by Dynamic Graph Neural Network (DGDFEM). It includes three stages,
i.e., preparing a data pipeline, building a dynamic graph, and training a CVR
prediction model. In the model training, we propose a novel graph convolutional
method named HLGCN, which leverages both high-pass and low-pass filters to deal
with conversion and non-conversion relationships. The proposed method achieves
both data freshness and label accuracy. We conduct extensive experiments on
three industry datasets, which validate the consistent superiority of our
method.
- Abstract(参考訳): 遅延フィードバック問題は、ユーザの変換が常にオンラインの商用システムでは遅れているため、コンバージョン率を予測する上で最も差し迫った課題の1つだ。
新しいデータは継続的なトレーニングに有益であるが、完全なフィードバック情報、すなわち変換ラベルがなければ、トレーニングアルゴリズムは圧倒的な偽陰性を被る可能性がある。
既存の手法では、遅延したフィードバック問題を解決するためにマルチタスク学習やデータパイプラインを設計する傾向がある。
しかし、これらの手法はデータの鮮度とラベルの精度のトレードオフがある。
本稿では,動的グラフニューラルネットワーク(DGDFEM)による遅延フィードバックモデリングを提案する。
データパイプラインの作成、動的グラフの構築、CVR予測モデルのトレーニングという3つのステージが含まれている。
モデルトレーニングでは,高域通過フィルタと低域通過フィルタを併用して変換や非変換関係を扱うHLGCNという新しいグラフ畳み込み手法を提案する。
提案手法はデータの鮮度とラベル精度の両方を実現する。
提案手法の一貫性を検証した3つの産業データセットについて広範な実験を行った。
関連論文リスト
- Addressing Concept Shift in Online Time Series Forecasting: Detect-then-Adapt [37.98336090671441]
概念 textbfDrift textbfDetection antextbfD textbfAdaptation (D3A)
まずドリフトの概念を検知し、次に急激な適応の検出の後、現在のモデルをドリフトされた概念に積極的に適応する。
これは、トレイン-テストのパフォーマンスの不整合に寄与する重要な要因であるデータ分散ギャップを軽減するのに役立ちます。
論文 参考訳(メタデータ) (2024-03-22T04:44:43Z) - CovarNav: Machine Unlearning via Model Inversion and Covariance
Navigation [11.222501077070765]
機械学習は、訓練されたモデルに対する特定のトレーニングデータポイントの影響を選択的に除去する重要なテクニックとして登場した。
我々は,このことを忘れないように,CovarNavという3段階のプロセスを導入する。
CIFAR-10とVggface2データセット上でCovarNavを厳格に評価する。
論文 参考訳(メタデータ) (2023-11-21T21:19:59Z) - Adapting to Change: Robust Counterfactual Explanations in Dynamic Data
Landscapes [9.943459106509687]
我々は、新しい半教師付きグラフカウンターファクトExplainer(GCE)方法論、ダイナミックGRAphカウンタファクトExplainer(DyGRACE)を紹介する。
これは、データ配布に関する初期知識を活用して、有効な偽物を探すと同時に、後続の時間ステップにおいて、潜在的に時代遅れな決定関数からの情報を使用することを避けます。
DyGRACEは非常に効果的でドリフト検出器として機能し、反復間の再構成誤差の違いに基づいて分布ドリフトを識別する。
論文 参考訳(メタデータ) (2023-08-04T14:41:03Z) - A New Benchmark: On the Utility of Synthetic Data with Blender for Bare
Supervised Learning and Downstream Domain Adaptation [42.2398858786125]
コンピュータビジョンにおけるディープラーニングは、大規模ラベル付きトレーニングデータの価格で大きな成功を収めた。
制御不能なデータ収集プロセスは、望ましくない重複が存在する可能性のある非IIDトレーニングおよびテストデータを生成する。
これを回避するために、ドメインランダム化による3Dレンダリングによる合成データを生成する方法がある。
論文 参考訳(メタデータ) (2023-03-16T09:03:52Z) - Deep Graph Stream SVDD: Anomaly Detection in Cyber-Physical Systems [17.373668215331737]
本稿では,異常検出のためのディープグラフベクトルデータ記述法(SVDD)を提案する。
まず、時間的埋め込みにおけるデータ監視の短絡パターンと長絡パターンの両方を保存するために、トランスフォーマーを使用します。
センサタイプに応じてこれらの埋め込みをクラスタリングし、各種センサ間の接続性の変化を推定し、新しい重み付きグラフを構築する。
論文 参考訳(メタデータ) (2023-02-24T22:14:39Z) - Few-Shot Non-Parametric Learning with Deep Latent Variable Model [50.746273235463754]
遅延変数を用いた圧縮による非パラメトリック学習(NPC-LV)を提案する。
NPC-LVは、ラベルなしデータが多いがラベル付きデータはほとんどないデータセットの学習フレームワークである。
我々は,NPC-LVが低データ構造における画像分類における3つのデータセットの教師あり手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-06-23T09:35:03Z) - Learning to Generate Synthetic Training Data using Gradient Matching and
Implicit Differentiation [77.34726150561087]
本稿では,深層ネットワークの訓練に要するデータ量を削減できる各種データ蒸留技術について検討する。
近年の考え方に触発されて, 生成的学習ネットワーク, 勾配マッチング, インプリシット関数理論に基づく新しいデータ蒸留手法を提案する。
論文 参考訳(メタデータ) (2022-03-16T11:45:32Z) - Causal Incremental Graph Convolution for Recommender System Retraining [89.25922726558875]
実世界のレコメンデーションシステムは、新しいデータを維持するために定期的に再トレーニングする必要がある。
本研究では,GCNに基づくレコメンデータモデルを用いて,グラフ畳み込みネットワーク(GCN)を効率的に再学習する方法を検討する。
論文 参考訳(メタデータ) (2021-08-16T04:20:09Z) - Deep Feedback Inverse Problem Solver [141.26041463617963]
逆問題に対する効率的で効果的で汎用的なアプローチを提案する。
我々は、フォワードプロセスが提供するフィードバック信号を活用し、反復的な更新モデルを学ぶ。
私たちのアプローチは前もってのプロセスに制限がなく、事前の知識も必要ありません。
論文 参考訳(メタデータ) (2021-01-19T16:49:06Z) - Advanced Dropout: A Model-free Methodology for Bayesian Dropout
Optimization [62.8384110757689]
ディープニューラルネットワーク(DNN)の現実的応用において、ユビキタスなオーバーフィッティングが存在する
先進的なドロップアウト手法は、パラメトリック先行でモデルフリーで容易に実装された分布を適用し、ドロップアウト率を適応的に調整する。
7つのコンピュータビジョンデータセットにおける9つのドロップアウト手法に対する高度なドロップアウトの有効性を評価する。
論文 参考訳(メタデータ) (2020-10-11T13:19:58Z) - 2nd Place Scheme on Action Recognition Track of ECCV 2020 VIPriors
Challenges: An Efficient Optical Flow Stream Guided Framework [57.847010327319964]
我々は、小さなデータセットでモデルをスクラッチからトレーニングできるデータ効率フレームワークを提案する。
具体的には、3D中心差分畳み込み演算を導入することで、新しいC3Dニューラルネットワークベースの2ストリームフレームワークを提案する。
提案手法は,大規模データセット上で事前学習したモデルがなくても,有望な結果が得られることを実証した。
論文 参考訳(メタデータ) (2020-08-10T09:50:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。