論文の概要: Addressing Concept Shift in Online Time Series Forecasting: Detect-then-Adapt
- arxiv url: http://arxiv.org/abs/2403.14949v1
- Date: Fri, 22 Mar 2024 04:44:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 18:37:30.407265
- Title: Addressing Concept Shift in Online Time Series Forecasting: Detect-then-Adapt
- Title(参考訳): オンライン時系列予測における概念シフトへの対処 - Detect-then-Adapt
- Authors: YiFan Zhang, Weiqi Chen, Zhaoyang Zhu, Dalin Qin, Liang Sun, Xue Wang, Qingsong Wen, Zhang Zhang, Liang Wang, Rong Jin,
- Abstract要約: 概念 textbfDrift textbfDetection antextbfD textbfAdaptation (D3A)
まずドリフトの概念を検知し、次に急激な適応の検出の後、現在のモデルをドリフトされた概念に積極的に適応する。
これは、トレイン-テストのパフォーマンスの不整合に寄与する重要な要因であるデータ分散ギャップを軽減するのに役立ちます。
- 参考スコア(独自算出の注目度): 37.98336090671441
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Online updating of time series forecasting models aims to tackle the challenge of concept drifting by adjusting forecasting models based on streaming data. While numerous algorithms have been developed, most of them focus on model design and updating. In practice, many of these methods struggle with continuous performance regression in the face of accumulated concept drifts over time. To address this limitation, we present a novel approach, Concept \textbf{D}rift \textbf{D}etection an\textbf{D} \textbf{A}daptation (D3A), that first detects drifting conception and then aggressively adapts the current model to the drifted concepts after the detection for rapid adaption. To best harness the utility of historical data for model adaptation, we propose a data augmentation strategy introducing Gaussian noise into existing training instances. It helps mitigate the data distribution gap, a critical factor contributing to train-test performance inconsistency. The significance of our data augmentation process is verified by our theoretical analysis. Our empirical studies across six datasets demonstrate the effectiveness of D3A in improving model adaptation capability. Notably, compared to a simple Temporal Convolutional Network (TCN) baseline, D3A reduces the average Mean Squared Error (MSE) by $43.9\%$. For the state-of-the-art (SOTA) model, the MSE is reduced by $33.3\%$.
- Abstract(参考訳): 時系列予測モデルのオンライン更新は,ストリーミングデータに基づく予測モデルを調整することで,概念漂流の課題に取り組むことを目的としている。
多くのアルゴリズムが開発されているが、そのほとんどはモデル設計と更新に焦点を当てている。
実際、これらの手法の多くは、蓄積された概念が時間の経過とともに漂流する中で、継続的なパフォーマンスの回帰に苦しむ。
この制限に対処するために、新しいアプローチである Concept \textbf{D}rift \textbf{D}etection an\textbf{D} \textbf{A}daptation (D3A) を提案する。
モデル適応のための履歴データの活用を最大限に活用するために,既存のトレーニングインスタンスにガウスノイズを導入したデータ拡張戦略を提案する。
これは、トレイン-テストのパフォーマンスの不整合に寄与する重要な要因であるデータ分散ギャップを軽減するのに役立ちます。
データ拡張プロセスの重要性を理論的解析により検証した。
6つのデータセットを対象とした実証研究により,モデル適応性向上におけるD3Aの有効性が示された。
特に、単純な時間畳み込みネットワーク(TCN)のベースラインと比較して、D3Aは平均的正方形誤差(MSE)を43.9 %$に下げる。
最先端のSOTA(State-of-the-art)モデルでは、MSEは33.3\%$に値下げされる。
関連論文リスト
- Liquid Neural Network-based Adaptive Learning vs. Incremental Learning for Link Load Prediction amid Concept Drift due to Network Failures [37.66676003679306]
概念の漂流に適応することは、機械学習において難しい課題である。
通信ネットワークでは、障害イベントの後に交通予報を行う際にこのような問題が生じる。
本稿では,適応学習アルゴリズム,すなわち,データパターンの急激な変化を,再学習を必要とせずに自己適応できる手法を提案する。
論文 参考訳(メタデータ) (2024-04-08T08:47:46Z) - LARA: A Light and Anti-overfitting Retraining Approach for Unsupervised
Time Series Anomaly Detection [49.52429991848581]
深部変分自動エンコーダに基づく時系列異常検出手法(VAE)のための光・反オーバーフィット学習手法(LARA)を提案する。
本研究の目的は,1) 再学習過程を凸問題として定式化し, 過度に収束できること,2) 履歴データを保存せずに活用するルミネートブロックを設計すること,3) 潜在ベクトルと再構成データの微調整を行うと, 線形形成が基底真実と微調整されたブロックとの誤りを最小に調整できることを数学的に証明することである。
論文 参考訳(メタデータ) (2023-10-09T12:36:16Z) - MemDA: Forecasting Urban Time Series with Memory-based Drift Adaptation [24.284969264008733]
本稿では,データの周期性を考慮してドリフトを符号化するコンセプトドリフト問題に対する新しい都市時系列予測モデルを提案する。
我々の設計は最先端の手法よりも優れており、既存の予測バックボーンに十分に一般化することができる。
論文 参考訳(メタデータ) (2023-09-25T15:22:28Z) - Learning Sample Difficulty from Pre-trained Models for Reliable
Prediction [55.77136037458667]
本稿では,大規模事前学習モデルを用いて,サンプル難易度を考慮したエントロピー正規化による下流モデルトレーニングを指導する。
我々は、挑戦的なベンチマークで精度と不確実性の校正を同時に改善する。
論文 参考訳(メタデータ) (2023-04-20T07:29:23Z) - Learned Vertex Descent: A New Direction for 3D Human Model Fitting [64.04726230507258]
画像やスキャンに適合する3次元人体モデルのための新しい最適化手法を提案する。
われわれのアプローチは、非常に異なる体型を持つ服を着た人々の基盤となる身体を捉えることができ、最先端技術と比べて大きな改善を達成できる。
LVDはまた、人間と手の3次元モデル適合にも適用でき、よりシンプルで高速な方法でSOTAに大きな改善が示される。
論文 参考訳(メタデータ) (2022-05-12T17:55:51Z) - Distribution-Aware Single-Stage Models for Multi-Person 3D Pose
Estimation [29.430404703883084]
本稿では,多人数の3Dポーズ推定問題に対処する新しいDASモデルを提案する。
提案するDASモデルでは,3次元カメラ空間における人物位置と人体関節をワンパスで同時に位置決めする。
CMU Panoptic と MuPoTS-3D のベンチマークに関する総合的な実験は、提案したDASモデルの優れた効率を実証している。
論文 参考訳(メタデータ) (2022-03-15T07:30:27Z) - Autoregressive based Drift Detection Method [0.0]
我々はADDMと呼ばれる自己回帰モデルに基づく新しい概念ドリフト検出手法を提案する。
以上の結果から,新しいドリフト検出法は最先端ドリフト検出法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2022-03-09T14:36:16Z) - Employing chunk size adaptation to overcome concept drift [2.277447144331876]
ブロックベースのデータストリーム分類アルゴリズムに適応可能な新しいチャンク適応復元フレームワークを提案する。
提案アルゴリズムは,概念ドリフト検出時のデータチャンクサイズを調整し,その変更が使用済みモデルの予測性能に与える影響を最小限に抑える。
論文 参考訳(メタデータ) (2021-10-25T12:36:22Z) - Probabilistic Modeling for Human Mesh Recovery [73.11532990173441]
本稿では,2次元の証拠から3次元の人体復元の問題に焦点を当てた。
我々は,この問題を,入力から3Dポーズの分布へのマッピング学習として再考した。
論文 参考訳(メタデータ) (2021-08-26T17:55:11Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
我々は、バリエーションのホストが、我々が提案する統一されたフレームワークでカバー可能であることを示す。
本稿では,この手法の収束性を証明し,ResNet,LSTM,Transformer上での経験的性能を厳格に評価する。
論文 参考訳(メタデータ) (2020-06-10T08:22:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。