論文の概要: A Framework for Data-Driven Explainability in Mathematical Optimization
- arxiv url: http://arxiv.org/abs/2308.08309v1
- Date: Wed, 16 Aug 2023 12:12:24 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-17 13:46:10.261885
- Title: A Framework for Data-Driven Explainability in Mathematical Optimization
- Title(参考訳): 数理最適化におけるデータ駆動説明可能性の枠組み
- Authors: Kevin-Martin Aigner, Marc Goerigk, Michael Hartisch, Frauke Liers,
Arthur Miehlich
- Abstract要約: 最適化ソフトウェアがブラックボックスとして認識されているため、確実に最適な解決策は受け入れられないかもしれない。
我々は、目的値の横にある別の評価基準として、ソリューションの説明可能性を導入することを提唱する。
説明責任を強制するコストは非常に小さいことが判明した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Advancements in mathematical programming have made it possible to efficiently
tackle large-scale real-world problems that were deemed intractable just a few
decades ago. However, provably optimal solutions may not be accepted due to the
perception of optimization software as a black box. Although well understood by
scientists, this lacks easy accessibility for practitioners. Hence, we advocate
for introducing the explainability of a solution as another evaluation
criterion, next to its objective value, which enables us to find trade-off
solutions between these two criteria. Explainability is attained by comparing
against (not necessarily optimal) solutions that were implemented in similar
situations in the past. Thus, solutions are preferred that exhibit similar
features. Although we prove that already in simple cases the explainable model
is NP-hard, we characterize relevant polynomially solvable cases such as the
explainable shortest-path problem. Our numerical experiments on both artificial
as well as real-world road networks show the resulting Pareto front. It turns
out that the cost of enforcing explainability can be very small.
- Abstract(参考訳): 数理プログラミングの進歩により、数十年前には難解と見なされていた大規模な実世界の問題に効率的に取り組めるようになった。
しかし、最適化ソフトウェアをブラックボックスとして認識するため、証明可能な最適解は受け入れられない。
科学者はよく理解しているが、これは実践者にとって容易なアクセシビリティを欠いている。
したがって、目的値の横にある別の評価基準としてソリューションの説明可能性を導入することで、これらの2つの基準間のトレードオフソリューションを見つけることができる。
説明可能性は、過去に同様の状況で実装された(必ずしも最適ではない)ソリューションと比較することによって達成される。
したがって、同様の特徴を示すソリューションが好まれる。
すでに単純な場合では説明可能なモデルはnpハードであることが証明されているが、説明可能な最短経路問題のような関連する多項式可解の場合を特徴付ける。
実世界の道路網と人工道路網の両方に関する数値実験は,パレートフロントの結果を示している。
説明責任を強制するコストは非常に小さいことが分かりました。
関連論文リスト
- Near-Optimal Solutions of Constrained Learning Problems [85.48853063302764]
機械学習システムでは、振る舞いを縮小する必要性がますます顕在化している。
これは、双対ロバスト性変数を満たすモデルの開発に向けた最近の進歩によって証明されている。
この結果から, 豊富なパラメトリゼーションは非次元的, 有限な学習問題を効果的に緩和することが示された。
論文 参考訳(メタデータ) (2024-03-18T14:55:45Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
本稿では,DeepMatching NetworksとReinforcement Learningメソッドの有効性を解析するための新しい理論フレームワークを提案する。
我々の主な貢献は、Max- and Min-Cut、Max-$k$-Bipartite-Bi、Maximum-Weight-Bipartite-Bi、Traveing Salesman Problemを含む幅広い問題である。
本分析の副産物として,バニラ降下による新たな正則化プロセスを導入し,失効する段階的な問題に対処し,悪い静止点から逃れる上で有効であることを示す理論的および実験的証拠を提供する。
論文 参考訳(メタデータ) (2023-10-08T23:39:38Z) - Optimal and Efficient Binary Questioning for Human-in-the-Loop
Annotation [11.4375764457726]
本稿では,アノテートされたデータに予測器を付与するという,無視された相補的問題を考察する。
単純な二項分類設定では、最適一般解から実用的な方法まで幅広いスペクトルを提示する。
論文 参考訳(メタデータ) (2023-07-04T09:11:33Z) - Learning to Optimize with Stochastic Dominance Constraints [103.26714928625582]
本稿では,不確実量を比較する問題に対して,単純かつ効率的なアプローチを開発する。
我々はラグランジアンの内部最適化をサロゲート近似の学習問題として再考した。
提案したライト-SDは、ファイナンスからサプライチェーン管理に至るまで、いくつかの代表的な問題において優れた性能を示す。
論文 参考訳(メタデータ) (2022-11-14T21:54:31Z) - QuAnt: Quantum Annealing with Learnt Couplings [18.40480332882025]
我々はデータからQUBOフォームを導出するのではなく、勾配のバックプロパゲーションを通して学習する。
本稿では,グラフマッチングや2次元点雲のアライメント,3次元回転推定といった多種多様な問題に対する学習QUBOの利点を示す。
論文 参考訳(メタデータ) (2022-10-13T17:59:46Z) - A Framework for Inherently Interpretable Optimization Models [0.0]
何十年も前に難解だった大規模な問題の解決は、今や日常的な課題である。
1つの大きな障壁は、最適化ソフトウェアがブラックボックスとして認識できることである。
本稿では、本質的に理解しやすい説明規則を持つ解を導出する最適化フレームワークを提案する。
論文 参考訳(メタデータ) (2022-08-26T10:32:00Z) - Learning Proximal Operators to Discover Multiple Optima [66.98045013486794]
非家族問題における近位演算子を学習するためのエンドツーエンド手法を提案する。
本手法は,弱い目的と穏やかな条件下では,世界規模で収束することを示す。
論文 参考訳(メタデータ) (2022-01-28T05:53:28Z) - Efficient and Optimal Algorithms for Contextual Dueling Bandits under
Realizability [59.81339109121384]
我々は,学習者が文脈情報を用いて2つの決定を下す連続的な決定設定であるK$コンテキストデュエルバンディット問題について検討するが,一方の判断が他方よりも優れていることを示唆する強調基準に基づくフィードバックのみを観察する。
提案手法は, 最善応答後悔という新たな概念に対して, 最善応答後悔に対する最適後悔率を実現するアルゴリズムである。
論文 参考訳(メタデータ) (2021-11-24T07:14:57Z) - On Satisficing in Quantitative Games [30.53498001438171]
本研究は,割引コストモデルを用いた2プレイヤーグラフゲームにおける満足度問題を定義し,検討する。
最適化問題と同様に数値手法で満足度を解くことができるが、この手法は最適化よりも説得力のある利点を示さない。
論文 参考訳(メタデータ) (2021-01-06T07:47:13Z) - From Checking to Inference: Actual Causality Computations as
Optimization Problems [79.87179017975235]
本稿では、最適化問題として二元非巡回モデルよりも、因果推論の異なる概念を定式化するための新しいアプローチを提案する。
8000ドル以上の変数を持つモデルを用いて,MaxSAT が ILP を上回り,数秒単位でチェック処理を行う場合が多い。
論文 参考訳(メタデータ) (2020-06-05T10:56:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。