Stable and Causal Inference for Discriminative Self-supervised Deep
Visual Representations
- URL: http://arxiv.org/abs/2308.08321v1
- Date: Wed, 16 Aug 2023 12:30:17 GMT
- Title: Stable and Causal Inference for Discriminative Self-supervised Deep
Visual Representations
- Authors: Yuewei Yang, Hai Li, Yiran Chen
- Abstract summary: We analyze discriminative self-supervised methods from a causal perspective to explain unstable behaviors.
Our solutions involve tempering a linear transformation with controlled synthetic data.
- Score: 10.41003719027387
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, discriminative self-supervised methods have made significant
strides in advancing various visual tasks. The central idea of learning a data
encoder that is robust to data distortions/augmentations is straightforward yet
highly effective. Although many studies have demonstrated the empirical success
of various learning methods, the resulting learned representations can exhibit
instability and hinder downstream performance. In this study, we analyze
discriminative self-supervised methods from a causal perspective to explain
these unstable behaviors and propose solutions to overcome them. Our approach
draws inspiration from prior works that empirically demonstrate the ability of
discriminative self-supervised methods to demix ground truth causal sources to
some extent. Unlike previous work on causality-empowered representation
learning, we do not apply our solutions during the training process but rather
during the inference process to improve time efficiency. Through experiments on
both controlled image datasets and realistic image datasets, we show that our
proposed solutions, which involve tempering a linear transformation with
controlled synthetic data, are effective in addressing these issues.
Related papers
- Inverse-RLignment: Inverse Reinforcement Learning from Demonstrations for LLM Alignment [62.05713042908654]
We introduce Alignment from Demonstrations (AfD), a novel approach leveraging high-quality demonstration data to overcome these challenges.
We formalize AfD within a sequential decision-making framework, highlighting its unique challenge of missing reward signals.
Practically, we propose a computationally efficient algorithm that extrapolates over a tailored reward model for AfD.
arXiv Detail & Related papers (2024-05-24T15:13:53Z) - The Common Stability Mechanism behind most Self-Supervised Learning
Approaches [64.40701218561921]
We provide a framework to explain the stability mechanism of different self-supervised learning techniques.
We discuss the working mechanism of contrastive techniques like SimCLR, non-contrastive techniques like BYOL, SWAV, SimSiam, Barlow Twins, and DINO.
We formulate different hypotheses and test them using the Imagenet100 dataset.
arXiv Detail & Related papers (2024-02-22T20:36:24Z) - From Pretext to Purpose: Batch-Adaptive Self-Supervised Learning [32.18543787821028]
This paper proposes an adaptive technique of batch fusion for self-supervised contrastive learning.
It achieves state-of-the-art performance under equitable comparisons.
We suggest that the proposed method may contribute to the advancement of data-driven self-supervised learning research.
arXiv Detail & Related papers (2023-11-16T15:47:49Z) - Automated Deception Detection from Videos: Using End-to-End Learning
Based High-Level Features and Classification Approaches [0.0]
We propose a multimodal approach combining deep learning and discriminative models for deception detection.
We employ convolutional end-to-end learning to analyze gaze, head pose, and facial expressions.
Our approach is evaluated on five datasets, including a new Rolling-Dice Experiment motivated by economic factors.
arXiv Detail & Related papers (2023-07-13T08:45:15Z) - Accelerating exploration and representation learning with offline
pre-training [52.6912479800592]
We show that exploration and representation learning can be improved by separately learning two different models from a single offline dataset.
We show that learning a state representation using noise-contrastive estimation and a model of auxiliary reward can significantly improve the sample efficiency on the challenging NetHack benchmark.
arXiv Detail & Related papers (2023-03-31T18:03:30Z) - Sample-efficient Adversarial Imitation Learning [45.400080101596956]
We propose a self-supervised representation-based adversarial imitation learning method to learn state and action representations.
We show a 39% relative improvement over existing adversarial imitation learning methods on MuJoCo in a setting limited to 100 expert state-action pairs.
arXiv Detail & Related papers (2023-03-14T12:36:01Z) - Causal Deep Reinforcement Learning Using Observational Data [11.790171301328158]
We propose two deconfounding methods in deep reinforcement learning (DRL)
The methods first calculate the importance degree of different samples based on the causal inference technique, and then adjust the impact of different samples on the loss function.
We prove the effectiveness of our deconfounding methods and validate them experimentally.
arXiv Detail & Related papers (2022-11-28T14:34:39Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
We propose the first Source-Free Unsupervised Domain Adaptation (SFUDA) method for Facial Expression Recognition (FER)
Our method exploits self-supervised pretraining to learn good feature representations from the target data.
We validate the effectiveness of our method in four adaptation setups, proving that it consistently outperforms existing SFUDA methods when applied to FER.
arXiv Detail & Related papers (2022-10-11T08:24:50Z) - On Modality Bias Recognition and Reduction [70.69194431713825]
We study the modality bias problem in the context of multi-modal classification.
We propose a plug-and-play loss function method, whereby the feature space for each label is adaptively learned.
Our method yields remarkable performance improvements compared with the baselines.
arXiv Detail & Related papers (2022-02-25T13:47:09Z) - Heterogeneous Contrastive Learning: Encoding Spatial Information for
Compact Visual Representations [183.03278932562438]
This paper presents an effective approach that adds spatial information to the encoding stage to alleviate the learning inconsistency between the contrastive objective and strong data augmentation operations.
We show that our approach achieves higher efficiency in visual representations and thus delivers a key message to inspire the future research of self-supervised visual representation learning.
arXiv Detail & Related papers (2020-11-19T16:26:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.