論文の概要: Efficient Commercial Bank Customer Credit Risk Assessment Based on
LightGBM and Feature Engineering
- arxiv url: http://arxiv.org/abs/2308.08762v1
- Date: Thu, 17 Aug 2023 03:32:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-21 18:05:07.676857
- Title: Efficient Commercial Bank Customer Credit Risk Assessment Based on
LightGBM and Feature Engineering
- Title(参考訳): LightGBMと機能工学に基づく効率的な商業銀行顧客信用リスク評価
- Authors: Yanjie Sun, Zhike Gong, Quan Shi, Lin Chen
- Abstract要約: 本論文は、カグルの外国商業銀行の顧客情報データセットに基づくものである。
私たちはLightGBMアルゴリズムを使用して、顧客を分類する分類器を構築し、銀行が顧客の信用デフォルトの可能性を判断する手助けをします。
- 参考スコア(独自算出の注目度): 5.6081706361236865
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Effective control of credit risk is a key link in the steady operation of
commercial banks. This paper is mainly based on the customer information
dataset of a foreign commercial bank in Kaggle, and we use LightGBM algorithm
to build a classifier to classify customers, to help the bank judge the
possibility of customer credit default. This paper mainly deals with
characteristic engineering, such as missing value processing, coding,
imbalanced samples, etc., which greatly improves the machine learning effect.
The main innovation of this paper is to construct new feature attributes on the
basis of the original dataset so that the accuracy of the classifier reaches
0.734, and the AUC reaches 0.772, which is more than many classifiers based on
the same dataset. The model can provide some reference for commercial banks'
credit granting, and also provide some feature processing ideas for other
similar studies.
- Abstract(参考訳): 信用リスクの効果的な制御は、商業銀行の安定した運営において鍵となる。
本論文は主にカグルの外国商業銀行の顧客情報データセットに基づいており、lightgbmアルゴリズムを用いて顧客を分類する分類器を構築し、顧客の信用不履行の可能性の判断を支援する。
本稿では, 価値処理の欠如, コーディング, 不均衡サンプルなど, 機械学習効果を大きく改善する特徴的工学を主に扱う。
本論文の主な革新は,分類器の精度が0.734に達し,AUCが0.772に達するように,元のデータセットに基づいて新たな特徴属性を構築することである。
このモデルは、商業銀行の信用供与に関するいくつかの参照を提供し、他の類似の研究のためにいくつかの特徴処理のアイデアを提供することができる。
関連論文リスト
- Bayesian Regression for Predicting Subscription to Bank Term Deposits in Direct Marketing Campaigns [0.0]
本研究の目的は,長期預金契約予測におけるロジットモデルとプロビットモデルの有効性を検討することである。
ターゲット変数はデータセット固有の不均衡を考慮してバランスが取れた。
ロジットモデルは、この分類問題を扱う際に、プロビットモデルよりも優れていた。
論文 参考訳(メタデータ) (2024-10-28T21:04:58Z) - Empowering Many, Biasing a Few: Generalist Credit Scoring through Large
Language Models [53.620827459684094]
大規模言語モデル(LLM)は、複数のタスクにまたがる強力な一般化能力を持つ信用スコアリングタスクにおいて大きな可能性を秘めている。
クレジットスコアリングのための LLM を探索する,初のオープンソース包括的フレームワークを提案する。
そこで我々は,各種金融リスク評価タスクの煩雑な要求に合わせて,指導チューニングによる最初の信用・リスク評価大言語モデル(CALM)を提案する。
論文 参考訳(メタデータ) (2023-10-01T03:50:34Z) - Fed-CBS: A Heterogeneity-Aware Client Sampling Mechanism for Federated
Learning via Class-Imbalance Reduction [76.26710990597498]
本研究では,ランダムに選択したクライアントからのグループデータのクラス不均衡が,性能の大幅な低下につながることを示す。
我々のキーとなる観測に基づいて、我々は効率的なクライアントサンプリング機構、すなわちフェデレートクラスバランスサンプリング(Fed-CBS)を設計する。
特に、クラス不均衡の尺度を提案し、その後、同型暗号化を用いてプライバシー保護方式でこの尺度を導出する。
論文 参考訳(メタデータ) (2022-09-30T05:42:56Z) - Machine Learning Models Evaluation and Feature Importance Analysis on
NPL Dataset [0.0]
エチオピアのプライベートバンクが提供するデータセット上で、異なる機械学習モデルがどのように機能するかを評価する。
XGBoostは、KMeans SMOTEオーバーサンプリングデータ上で最高F1スコアを達成する。
論文 参考訳(メタデータ) (2022-08-28T17:09:44Z) - Feature-Level Fusion of Super-App and Telecommunication Alternative Data
Sources for Credit Card Fraud Detection [106.33204064461802]
クレジットカード不正を早期に検出するための,スーパーアプリ顧客情報,携帯電話回線データ,従来型の信用リスク変数を融合した機能レベルの有効性について検討する。
クレジットカードのデジタルプラットフォームデータベースから約9万人のユーザを対象に,我々のアプローチを評価した。
論文 参考訳(メタデータ) (2021-11-05T19:10:35Z) - Bagging Supervised Autoencoder Classifier for Credit Scoring [3.5977219275318166]
クレジットスコアリングデータセットの不均衡の性質と、クレジットスコアリングデータセットの特徴の不均一性は、効果的なクレジットスコアリングモデルの開発と実装に困難をもたらす。
本稿では,主にスーパービジョンオートエンコーダの性能を活かしたBaging Supervised Autoencoder (BSAC)を提案する。
BSACはまた、過半数クラスのアンサンプに基づいて、Bagingプロセスの変種を採用することで、データ不均衡の問題にも対処する。
論文 参考訳(メタデータ) (2021-08-12T17:49:08Z) - Explanations of Machine Learning predictions: a mandatory step for its
application to Operational Processes [61.20223338508952]
信用リスクモデリングは重要な役割を果たす。
近年,機械学習や深層学習の手法が採用されている。
この分野における説明可能性問題に LIME 手法を適用することを提案する。
論文 参考訳(メタデータ) (2020-12-30T10:27:59Z) - A Novel Classification Approach for Credit Scoring based on Gaussian
Mixture Models [0.0]
本稿では,ガウス混合モデルに基づく新たなクレジットスコアリング手法を提案する。
我々のアルゴリズムは、消費者を正または負とラベル付けされたグループに分類する。
我々は,オーストラリア,日本,ドイツの実世界のデータベースにモデルを適用した。
論文 参考訳(メタデータ) (2020-10-26T07:34:27Z) - PCAL: A Privacy-preserving Intelligent Credit Risk Modeling Framework
Based on Adversarial Learning [111.19576084222345]
本稿では,PCAL(Adversarial Learning)に基づくプライバシ保護型信用リスクモデリングの枠組みを提案する。
PCALは、ターゲット予測タスクのパフォーマンスの重要なユーティリティ情報を維持しながら、元のデータセット内のプライベート情報を隠蔽することを目的としている。
結果は,PCALがユーザデータから効果的なプライバシフリー表現を学習し,信用リスク分析のためのプライバシ保存機械学習の基盤となることを示唆している。
論文 参考訳(メタデータ) (2020-10-06T07:04:59Z) - Intelligent Credit Limit Management in Consumer Loans Based on Causal
Inference [5.292270534252169]
信用限度は、経験豊富な専門家によって開発された限られた戦略に基づいて調整される。
本稿では,信用限度をインテリジェントに管理するためのデータ駆動型アプローチを提案する。
論文 参考訳(メタデータ) (2020-07-10T06:22:44Z) - Super-App Behavioral Patterns in Credit Risk Models: Financial,
Statistical and Regulatory Implications [110.54266632357673]
従来の官僚データとは対照的に、アプリベースのマーケットプレースから派生した代替データが信用スコアモデルに与える影響を提示する。
2つの国にまたがって検証した結果、これらの新たなデータソースは、低体重者や若年者における金融行動を予測するのに特に有用であることが示された。
論文 参考訳(メタデータ) (2020-05-09T01:32:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。