論文の概要: Multi-fidelity Fourier Neural Operator for Fast Modeling of Large-Scale
Geological Carbon Storage
- arxiv url: http://arxiv.org/abs/2308.09113v3
- Date: Tue, 9 Jan 2024 19:12:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-11 17:18:09.672489
- Title: Multi-fidelity Fourier Neural Operator for Fast Modeling of Large-Scale
Geological Carbon Storage
- Title(参考訳): 大規模地質炭素貯蔵の高速モデリングのための多次元フーリエニューラルオペレータ
- Authors: Hewei Tang, Qingkai Kong and Joseph P. Morris
- Abstract要約: 本稿では,大規模炭素貯蔵問題の解決にFNO(Multi-fidelity Fourier Neural operator)を提案する。
我々はまず,GCS貯水池モデル上で110kの格子セルに離散化されたモデルの有効性を検証した。
マルチ忠実度モデルは、同じ量の高忠実度データを81%のコストでトレーニングした高忠実度モデルに匹敵する精度で予測できる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning-based surrogate models have been widely applied in geological
carbon storage (GCS) problems to accelerate the prediction of reservoir
pressure and CO2 plume migration. Large amounts of data from physics-based
numerical simulators are required to train a model to accurately predict the
complex physical behaviors associated with this process. In practice, the
available training data are always limited in large-scale 3D problems due to
the high computational cost. Therefore, we propose to use a multi-fidelity
Fourier neural operator (FNO) to solve large-scale GCS problems with more
affordable multi-fidelity training datasets. FNO has a desirable grid-invariant
property, which simplifies the transfer learning procedure between datasets
with different discretization. We first test the model efficacy on a GCS
reservoir model being discretized into 110k grid cells. The multi-fidelity
model can predict with accuracy comparable to a high-fidelity model trained
with the same amount of high-fidelity data with 81% less data generation costs.
We further test the generalizability of the multi-fidelity model on a same
reservoir model with a finer discretization of 1 million grid cells. This case
was made more challenging by employing high-fidelity and low-fidelity datasets
generated by different geostatistical models and reservoir simulators. We
observe that the multi-fidelity FNO model can predict pressure fields with
reasonable accuracy even when the high-fidelity data are extremely limited. The
findings of this study can help for better understanding of the transferability
of multi-fidelity deep learning surrogate models.
- Abstract(参考訳): 深層学習に基づくサロゲートモデルが地熱炭素貯蔵(GCS)問題に広く応用され、貯水池圧力の予測とCO2配管の移動が加速された。
このプロセスに関連する複雑な物理的挙動を正確に予測するために、物理ベースの数値シミュレーターからの大量のデータが必要である。
実際、利用可能なトレーニングデータは、高い計算コストのために、常に大規模な3D問題に制限される。
そこで我々は,より安価な多要素学習データセットを用いて大規模GCS問題を解決するために,FNO(Multi-fidelity Fourier Neural operator)を提案する。
FNOは望ましいグリッド不変性を持ち、異なる離散化を持つデータセット間の転送学習手順を単純化する。
まず,gcs貯留層モデルを110kグリッドセルに離散化したモデルの有効性を検証した。
マルチ忠実度モデルは、同じ量の高忠実度データを81%のコストでトレーニングした高忠実度モデルに匹敵する精度で予測できる。
さらに,100万個の格子セルの微細な離散化を伴う同一貯水池モデル上での多重忠実度モデルの一般化性を検証した。
このケースは、異なる地球統計モデルと貯水池シミュレータによって生成された高忠実度と低忠実度データセットを使用することでより困難になった。
高忠実度データが極端に制限された場合でも、多忠実度FNOモデルが妥当な精度で圧力場を予測できることを観察する。
本研究の知見は,多元的ディープラーニングモデルにおけるトランスファー可能性の理解を深める上で有用である。
関連論文リスト
- Practical multi-fidelity machine learning: fusion of deterministic and Bayesian models [0.34592277400656235]
マルチフィデリティ機械学習手法は、少ないリソース集約型高フィデリティデータと、豊富なが精度の低い低フィデリティデータを統合する。
低次元領域と高次元領域にまたがる問題に対する実用的多面性戦略を提案する。
論文 参考訳(メタデータ) (2024-07-21T10:40:50Z) - Gradient-enhanced deep Gaussian processes for multifidelity modelling [0.0]
マルチファイダリティモデルは、複数のソースからのデータを統合して、基礎となるプロセスのための単一の近似器を生成する。
ディープガウス過程(GP)は、非パラメトリックで、オーバーフィッティングに頑健で、小さなデータセットでうまく機能するため、多忠実なモデリングには魅力的である。
論文 参考訳(メタデータ) (2024-02-25T11:08:19Z) - Training Deep Surrogate Models with Large Scale Online Learning [48.7576911714538]
ディープラーニングアルゴリズムは、PDEの高速解を得るための有効な代替手段として登場した。
モデルは通常、ソルバによって生成された合成データに基づいてトレーニングされ、ディスクに格納され、トレーニングのために読み返される。
ディープサロゲートモデルのためのオープンソースのオンライントレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-28T12:02:27Z) - Multi-fidelity prediction of fluid flow and temperature field based on
transfer learning using Fourier Neural Operator [10.104417481736833]
本研究では,フーリエニューラル演算子に基づく新しい多要素学習手法を提案する。
トランスファーラーニングパラダイムの下では、豊富な低忠実度データと限られた高忠実度データを使用する。
提案した多忠実度モデルの精度を検証するために,3つの典型的な流体および温度予測問題を選択する。
論文 参考訳(メタデータ) (2023-04-14T07:46:03Z) - Multi-fidelity surrogate modeling for temperature field prediction using
deep convolution neural network [8.98674326282801]
本稿では,温度場予測のための深層多面体モデル (DMFM) を提案する。
低忠実度データを活用することで、高忠実度データの少ないパフォーマンスを向上する。
物理駆動型深層多面体モデル(PD-DMFM)の自己教師付き学習法を提案する。
論文 参考訳(メタデータ) (2023-01-17T03:13:45Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
GradABM(GradABM)は、エージェントベースのモデリングのためのスケーラブルで微分可能な設計で、勾配に基づく学習と自動微分が可能である。
GradABMは、コモディティハードウェア上で数秒で数百万の人口をシミュレートし、ディープニューラルネットワークと統合し、異種データソースを取り込みます。
論文 参考訳(メタデータ) (2022-07-20T07:32:02Z) - Learning Large-scale Subsurface Simulations with a Hybrid Graph Network
Simulator [57.57321628587564]
本研究では3次元地下流体の貯留層シミュレーションを学習するためのハイブリッドグラフネットワークシミュレータ (HGNS) を提案する。
HGNSは、流体の進化をモデル化する地下グラフニューラルネットワーク(SGNN)と、圧力の進化をモデル化する3D-U-Netで構成されている。
産業標準地下フローデータセット(SPE-10)と1100万セルを用いて,HGNSが標準地下シミュレータの18倍の推算時間を短縮できることを実証した。
論文 参考訳(メタデータ) (2022-06-15T17:29:57Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
多要素代理モデリングは、異なるシミュレーション出力を融合させることで計算コストを削減する。
本稿では,多階層型階層型ニューラルネットワーク(MF-HNP)を提案する。
疫学および気候モデリングタスクにおけるMF-HNPの評価を行い、精度と不確実性評価の観点から競合性能を達成した。
論文 参考訳(メタデータ) (2022-06-10T04:54:13Z) - Prediction of liquid fuel properties using machine learning models with
Gaussian processes and probabilistic conditional generative learning [56.67751936864119]
本研究の目的は、代替燃料の物理的特性を予測するためのクロージャ方程式として機能する、安価で計算可能な機械学習モデルを構築することである。
これらのモデルは、MDシミュレーションのデータベースや、データ融合-忠実性アプローチによる実験的な測定を用いて訓練することができる。
その結果,MLモデルでは,広範囲の圧力および温度条件の燃料特性を正確に予測できることがわかった。
論文 参考訳(メタデータ) (2021-10-18T14:43:50Z) - Understanding Overparameterization in Generative Adversarial Networks [56.57403335510056]
generative adversarial network (gans) は、非凹型ミニマックス最適化問題を訓練するために用いられる。
ある理論は、グローバル最適解に対する勾配降下 (gd) の重要性を示している。
ニューラルネットワークジェネレータと線形判別器を併用した多層GANにおいて、GDAは、基礎となる非凹面min-max問題の大域的なサドル点に収束することを示す。
論文 参考訳(メタデータ) (2021-04-12T16:23:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。