論文の概要: Uncertainty Quantification for Multi-fidelity Simulations
- arxiv url: http://arxiv.org/abs/2503.08408v1
- Date: Tue, 11 Mar 2025 13:11:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-12 19:17:15.690736
- Title: Uncertainty Quantification for Multi-fidelity Simulations
- Title(参考訳): 多重忠実度シミュレーションにおける不確かさの定量化
- Authors: Swapnil Kumar,
- Abstract要約: この研究は,Nektar++とXFOILを用いて,高忠実度および低忠実度数値シミュレーションデータを収集することに焦点を当てている。
リフトとドラッグの係数の計算における高い分布の利用は、精度と精度に優れていた。
不確かさ定量化における高忠実度数値シミュレーションの信頼性を最小化するために,多忠実度戦略が採用されている。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The work focuses on gathering high-fidelity and low-fidelity numerical simulations data using Nektar++ (Solver based on Applied Mathematics) and XFOIL respectively. The utilization of the higher polynomial distribution in calculating the Coefficient of lift and drag has demonstrated superior accuracy and precision. Further, Co-kriging Data fusion and Adaptive sampling technique has been used to obtain the precise data predictions for the lift and drag within the confined domain without conducting the costly simulations on HPC clusters. This creates a methodology to quantifying uncertainty in computational fluid dynamics by minimizing the required number of samples. To minimize the reliability on high-fidelity numerical simulations in Uncertainty Quantification, a multi-fidelity strategy has been adopted. The effectiveness of the multi-fidelity deep neural network model has been validated through the approximation of benchmark functions across 1-, 32-, and 100-dimensional, encompassing both linear and nonlinear correlations. The surrogate modelling results showed that multi-fidelity deep neural network model has shown excellent approximation capabilities for the test functions and multi-fidelity deep neural network method has outperformed Co-kriging in effectiveness. In addition to that, multi-fidelity deep neural network model is utilized for the simulation of aleatory uncertainty propagation in 1-, 32-, and 100 dimensional function test, considering both uniform and Gaussian distributions for input uncertainties. The results have shown that multi-fidelity deep neural network model has efficiently predicted the probability density distributions of quantities of interest as well as the statistical moments with precision and accuracy. The Co-Kriging model has exhibited limitations when addressing 32-Dimension problems due to the limitation of memory capacity for storage and manipulation.
- Abstract(参考訳): 本研究は,Nektar++ (Solver based on Applied Mathematics) と XFOIL を用いて,高忠実度および低忠実度数値シミュレーションデータを収集することに焦点を当てた。
リフトとドラッグの係数の計算における高次多項式分布の利用により,精度と精度が向上した。
さらに、HPCクラスタ上でコストのかかるシミュレーションを行うことなく、データ融合と適応サンプリングの併用により、制限領域内でのリフトとドラッグの正確なデータ予測が得られている。
これにより、必要なサンプル数を最小化し、計算流体力学の不確実性を定量化する手法が作成される。
不確かさ定量化における高忠実度数値シミュレーションの信頼性を最小化するために,多忠実度戦略が採用されている。
多要素ディープニューラルネットワークモデルの有効性は、1次元、32次元、100次元のベンチマーク関数の近似によって検証され、線形および非線形の相関関係を包含している。
シュロゲートモデルの結果,多要素ディープニューラルネットワークモデルではテスト関数の近似性能に優れており,多要素ディープニューラルネットワーク法はCo-krigingの効率に優れていた。
さらに,入力不確実性に対する一様分布とガウス分布を考慮した1次元,32次元,100次元関数テストにおいて,多要素ディープニューラルネットワークモデルを用いてアレート不確実性伝播のシミュレーションを行う。
その結果,多自由度ディープニューラルネットワークモデルでは,関心量の確率密度分布と,精度と精度の統計モーメントを効率的に予測できた。
Co-Krigingモデルでは、ストレージと操作のメモリ容量の制限により、32次元問題に対処する際の制限がある。
関連論文リスト
- Multi-Fidelity Bayesian Neural Network for Uncertainty Quantification in Transonic Aerodynamic Loads [0.0]
本稿では,多要素ベイズニューラルネットワークモデルを実装し,異なる忠実度モデルによって生成されたデータに転送学習を適用した。
その結果,マルチ忠実ベイズモデルでは,非表示データに対する総合的精度とロバスト性の観点から,最先端のCo-Krigingよりも優れていた。
論文 参考訳(メタデータ) (2024-07-08T07:34:35Z) - The Risk of Federated Learning to Skew Fine-Tuning Features and
Underperform Out-of-Distribution Robustness [50.52507648690234]
フェデレートされた学習は、微調整された特徴をスキイングし、モデルの堅牢性を損なうリスクがある。
3つのロバスト性指標を導入し、多様なロバストデータセットで実験を行う。
提案手法は,パラメータ効率のよい微調整手法を含む多種多様なシナリオにまたがるロバスト性を著しく向上させる。
論文 参考訳(メタデータ) (2024-01-25T09:18:51Z) - Ensemble models outperform single model uncertainties and predictions
for operator-learning of hypersonic flows [43.148818844265236]
限られた高忠実度データに基づく科学機械学習(SciML)モデルのトレーニングは、これまで見たことのない状況に対する行動の迅速な予測に1つのアプローチを提供する。
高忠実度データは、探索されていない入力空間におけるSciMLモデルのすべての出力を検証するために、それ自体が限られた量である。
我々は3つの異なる不確実性メカニズムを用いてDeepONetを拡張した。
論文 参考訳(メタデータ) (2023-10-31T18:07:29Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
多要素代理モデリングは、異なるシミュレーション出力を融合させることで計算コストを削減する。
本稿では,多階層型階層型ニューラルネットワーク(MF-HNP)を提案する。
疫学および気候モデリングタスクにおけるMF-HNPの評価を行い、精度と不確実性評価の観点から競合性能を達成した。
論文 参考訳(メタデータ) (2022-06-10T04:54:13Z) - Robust Implicit Networks via Non-Euclidean Contractions [63.91638306025768]
暗黙のニューラルネットワークは、精度の向上とメモリ消費の大幅な削減を示す。
彼らは不利な姿勢と収束の不安定さに悩まされる。
本論文は,ニューラルネットワークを高機能かつ頑健に設計するための新しい枠組みを提供する。
論文 参考訳(メタデータ) (2021-06-06T18:05:02Z) - Residual Gaussian Process: A Tractable Nonparametric Bayesian Emulator
for Multi-fidelity Simulations [6.6903363553912305]
高い忠実度溶液を最低忠実度溶液と残留物の和として記述する新規な付加構造が導入された。
得られたモデルは、予測後部のための閉形式解を備える。
特に計算予算が限られているモデルを改善するために,アクティブな学習がいかに有効かを示す。
論文 参考訳(メタデータ) (2021-04-08T12:57:46Z) - Multi-fidelity Bayesian Neural Networks: Algorithms and Applications [0.0]
本稿では,可変忠実度の雑音データを用いて訓練できるベイズ型ニューラルネットワーク(BNN)を提案する。
関数近似の学習や、偏微分方程式(PDE)に基づく逆問題の解法に応用する。
論文 参考訳(メタデータ) (2020-12-19T02:03:53Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
偏微分方程式 (PDE) を解くことは、多くのプロセスがPDEの観点でモデル化できるため、科学の多くの分野において不可欠である。
最近の数値解法では、基礎となる方程式を手動で離散化するだけでなく、分散コンピューティングのための高度で調整されたコードも必要である。
偏微分方程式, 物理インフォームドニューラルネットワーク(PINN)に対する連続メッシュフリーニューラルネットワークの適用性について検討する。
本稿では,解析解に関するGatedPINNの精度と,スペクトル解法などの最先端数値解法について論じる。
論文 参考訳(メタデータ) (2020-09-08T13:26:51Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
本稿では,ニューラルネットワークを用いた大規模AUCのための分散変数について検討する。
我々のモデルは通信ラウンドをはるかに少なくし、理論上はまだ多くの通信ラウンドを必要としています。
いくつかのデータセットに対する実験は、我々の理論の有効性を示し、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2020-05-05T18:08:23Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
本稿では,予測の多様性を奨励することで,ニューラルネットワークの効果的なアンサンブルを生成する問題をターゲットにする。
そこで本研究では,潜伏変数の学習における逆損失の多様性を明示的に最適化し,マルチモーダルデータのモデリングに必要な出力予測の多様性を得る。
最も競争力のあるベースラインと比較して、データ分布の変化の下で、分類精度が大幅に向上した。
論文 参考訳(メタデータ) (2020-03-10T03:10:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。