論文の概要: Learning in Cooperative Multiagent Systems Using Cognitive and Machine
Models
- arxiv url: http://arxiv.org/abs/2308.09219v1
- Date: Fri, 18 Aug 2023 00:39:06 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-21 15:17:51.799614
- Title: Learning in Cooperative Multiagent Systems Using Cognitive and Machine
Models
- Title(参考訳): 認知モデルと機械モデルを用いた協調マルチエージェントシステムの学習
- Authors: Thuy Ngoc Nguyen and Duy Nhat Phan and Cleotilde Gonzalez
- Abstract要約: マルチエージェントシステム(MAS)は、人間との協調と協調を必要とする多くのアプリケーションにとって重要である。
一つの大きな課題は、動的環境における独立したエージェントの同時学習と相互作用である。
我々はMulti-Agent IBLモデル(MAIBL)の3つの変種を提案する。
我々は,MAIBLモデルが学習速度を向上し,動的CMOTPタスクにおいて,現在のMADRLモデルと比較して様々な報酬設定でコーディネートを達成できることを実証した。
- 参考スコア(独自算出の注目度): 1.0742675209112622
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Developing effective Multi-Agent Systems (MAS) is critical for many
applications requiring collaboration and coordination with humans. Despite the
rapid advance of Multi-Agent Deep Reinforcement Learning (MADRL) in cooperative
MAS, one major challenge is the simultaneous learning and interaction of
independent agents in dynamic environments in the presence of stochastic
rewards. State-of-the-art MADRL models struggle to perform well in Coordinated
Multi-agent Object Transportation Problems (CMOTPs), wherein agents must
coordinate with each other and learn from stochastic rewards. In contrast,
humans often learn rapidly to adapt to nonstationary environments that require
coordination among people. In this paper, motivated by the demonstrated ability
of cognitive models based on Instance-Based Learning Theory (IBLT) to capture
human decisions in many dynamic decision making tasks, we propose three
variants of Multi-Agent IBL models (MAIBL). The idea of these MAIBL algorithms
is to combine the cognitive mechanisms of IBLT and the techniques of MADRL
models to deal with coordination MAS in stochastic environments from the
perspective of independent learners. We demonstrate that the MAIBL models
exhibit faster learning and achieve better coordination in a dynamic CMOTP task
with various settings of stochastic rewards compared to current MADRL models.
We discuss the benefits of integrating cognitive insights into MADRL models.
- Abstract(参考訳): 効果的なマルチエージェントシステム(mas)の開発は、人間とのコラボレーションと協調を必要とする多くのアプリケーションにとって重要である。
協調型MASにおけるマルチエージェント深層強化学習(MADRL)の急速な進歩にもかかわらず、確率的報酬の存在下での動的環境における独立エージェントの同時学習と相互作用が大きな課題である。
最先端のMADRLモデルは、協調型多エージェントオブジェクト輸送問題(CMOTP)において、エージェントが互いに協調し、確率的な報酬から学習する必要がある。
対照的に、人間は人間の協調を必要とする非定常環境に適応するために急速に学習することが多い。
本稿では,多くの動的意思決定タスクにおいて人間の意思決定を捉えるためのインスタンスベース学習理論(IBLT)に基づく認知モデルの実証的能力に動機付けられ,MAIBL(Multi-Agent IBL model)の3つの変種を提案する。
これらのMAIBLアルゴリズムの考え方は、IBLTの認知メカニズムとMADRLモデルの技法を組み合わせて、独立学習者の視点から確率的環境における協調MASを扱うことである。
MAIBLモデルは,従来のMADRLモデルと比較して,様々な確率的報酬設定による動的CMOTPタスクにおいて,学習の高速化と協調性の向上を実証する。
認知的洞察をMADRLモデルに組み込むことの利点について論じる。
関連論文リスト
- Learning Emergence of Interaction Patterns across Independent RL Agents in Multi-Agent Environments [3.0284592792243794]
ボトムアップネットワーク(BUN)は、マルチエージェントの集合を統一エンティティとして扱う。
協調ナビゲーションやトラヒックコントロールなどのタスクを含む,さまざまな協調型マルチエージェントシナリオに対する実証的な評価は,BUNが計算コストを大幅に削減したベースライン手法よりも優れていることを一貫して証明している。
論文 参考訳(メタデータ) (2024-10-03T14:25:02Z) - Efficient Adaptation in Mixed-Motive Environments via Hierarchical Opponent Modeling and Planning [51.52387511006586]
本稿では,HOP(Hierarchical Opponent Modeling and Planning)を提案する。
HOPは階層的に2つのモジュールから構成される: 相手の目標を推論し、対応する目標条件のポリシーを学ぶ、反対モデリングモジュール。
HOPは、さまざまな未確認エージェントと相互作用する際、優れた少数ショット適応能力を示し、セルフプレイのシナリオで優れている。
論文 参考訳(メタデータ) (2024-06-12T08:48:06Z) - Scaling Large-Language-Model-based Multi-Agent Collaboration [75.5241464256688]
大規模言語モデルによるエージェントのパイオニア化は、マルチエージェントコラボレーションの設計パターンを暗示している。
神経スケーリング法則に触発された本研究では,マルチエージェント協調におけるエージェントの増加に類似の原理が適用されるかを検討する。
論文 参考訳(メタデータ) (2024-06-11T11:02:04Z) - Decentralized and Lifelong-Adaptive Multi-Agent Collaborative Learning [57.652899266553035]
分散型および生涯適応型多エージェント協調学習は、中央サーバを使わずに複数のエージェント間のコラボレーションを強化することを目的としている。
動的協調グラフを用いた分散マルチエージェント生涯協調学習アルゴリズムであるDeLAMAを提案する。
論文 参考訳(メタデータ) (2024-03-11T09:21:11Z) - Joint Intrinsic Motivation for Coordinated Exploration in Multi-Agent
Deep Reinforcement Learning [0.0]
本稿では,エージェントが一括して斬新な行動を示すような報奨戦略を提案する。
ジムは連続した環境で機能するように設計されたノベルティの集中的な尺度に基づいて共同軌道に報いる。
その結果、最適戦略が高レベルの調整を必要とするタスクの解決には、共同探索が不可欠であることが示唆された。
論文 参考訳(メタデータ) (2024-02-06T13:02:00Z) - MADiff: Offline Multi-agent Learning with Diffusion Models [79.18130544233794]
拡散モデル(DM)は、最近オフライン強化学習を含む様々なシナリオで大きな成功を収めた。
この問題に対処する新しい生成型マルチエージェント学習フレームワークであるMADiffを提案する。
本実験は,マルチエージェント学習タスクにおけるベースラインアルゴリズムと比較して,MADiffの優れた性能を示す。
論文 参考訳(メタデータ) (2023-05-27T02:14:09Z) - Hierarchical Reinforcement Learning with Opponent Modeling for
Distributed Multi-agent Cooperation [13.670618752160594]
深層強化学習(DRL)はエージェントと環境の相互作用を通じて多エージェント協調に有望なアプローチを提供する。
従来のDRLソリューションは、ポリシー探索中に連続的なアクション空間を持つ複数のエージェントの高次元に悩まされる。
効率的な政策探索のための高レベル意思決定と低レベル個別制御を用いた階層型強化学習手法を提案する。
論文 参考訳(メタデータ) (2022-06-25T19:09:29Z) - Scalable Multi-Agent Model-Based Reinforcement Learning [1.95804735329484]
我々は,モデルベース強化学習(MBRL)を用いて協調環境における集中型トレーニングをさらに活用するMAMBAという新しい手法を提案する。
エージェント間のコミュニケーションは、実行期間中に各エージェントのワールドモデルを維持するのに十分であり、一方、仮想ロールアウトはトレーニングに使用でき、環境と対話する必要がなくなる。
論文 参考訳(メタデータ) (2022-05-25T08:35:00Z) - Multi-Agent Imitation Learning with Copulas [102.27052968901894]
マルチエージェント模倣学習は、観察と行動のマッピングを学習することで、デモからタスクを実行するために複数のエージェントを訓練することを目的としている。
本稿では,確率変数間の依存を捉える強力な統計ツールである copula を用いて,マルチエージェントシステムにおける相関関係と協調関係を明示的にモデル化する。
提案モデルでは,各エージェントの局所的行動パターンと,エージェント間の依存構造のみをフルにキャプチャするコプラ関数を別々に学習することができる。
論文 参考訳(メタデータ) (2021-07-10T03:49:41Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
マルチエージェントシステムにおける学習に有効なモデルベース強化学習アルゴリズムを提案する。
我々の理論的な貢献は、MFCのモデルベース強化学習における最初の一般的な後悔の限界である。
コア最適化問題の実用的なパラメトリゼーションを提供する。
論文 参考訳(メタデータ) (2021-07-08T18:01:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。