論文の概要: Enhancing Reasoning Capabilities of Large Language Models: A Graph-Based
Verification Approach
- arxiv url: http://arxiv.org/abs/2308.09267v3
- Date: Thu, 28 Sep 2023 16:35:58 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-29 20:09:05.293559
- Title: Enhancing Reasoning Capabilities of Large Language Models: A Graph-Based
Verification Approach
- Title(参考訳): 大規模言語モデルの推論能力の向上:グラフベースの検証アプローチ
- Authors: Lang Cao
- Abstract要約: 大きな言語モデル(LLM)は印象的な推論機能を示しています。
本稿では,LLMの推論能力をさらに向上するグラフベースの新しい手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have showcased impressive reasoning
capabilities, particularly when guided by specifically designed prompts in
complex reasoning tasks such as math word problems. These models typically
solve tasks using a chain-of-thought approach, which not only bolsters their
reasoning abilities but also provides valuable insights into their
problem-solving process. However, there is still significant room for enhancing
the reasoning abilities of LLMs. Some studies suggest that the integration of
an LLM output verifier can boost reasoning accuracy without necessitating
additional model training. In this paper, we follow these studies and introduce
a novel graph-based method to further augment the reasoning capabilities of
LLMs. We posit that multiple solutions to a reasoning task, generated by an
LLM, can be represented as a reasoning graph due to the logical connections
between intermediate steps from different reasoning paths. Therefore, we
propose the Reasoning Graph Verifier (RGV) to analyze and verify the solutions
generated by LLMs. By evaluating these graphs, models can yield more accurate
and reliable results.Our experimental results show that our graph-based
verification method not only significantly enhances the reasoning abilities of
LLMs but also outperforms existing verifier methods in terms of improving these
models' reasoning performance.
- Abstract(参考訳): 大きな言語モデル(LLM)は、特に数学の単語問題のような複雑な推論タスクにおいて、特別に設計されたプロンプトによってガイドされるときに、印象的な推論能力を示す。
これらのモデルは典型的にはチェーン・オブ・シント・アプローチを使ってタスクを解決し、推論能力を高めるだけでなく、問題解決プロセスに関する貴重な洞察を提供する。
しかし, LLMの推論能力を高める余地は依然として大きい。
いくつかの研究は、llm出力検証器の統合は、追加のモデルトレーニングを必要とせずに推論精度を高めることを示唆している。
本稿では,これらの研究に追従し,LLMの推論能力をさらに増強するグラフベースの新しい手法を提案する。
LLMによって生成される推論タスクに対する複数の解は、異なる推論経路からの中間ステップ間の論理的接続により、推論グラフとして表現できると仮定する。
そこで本研究では,LLMが生成した解を分析し,検証するReasoning Graph Verifier (RGV)を提案する。
実験結果から, LLMの推論能力の向上だけでなく, これらのモデルの推論性能の向上の観点からも, 既存の検証手法よりも優れていることがわかった。
関連論文リスト
- Make LLMs better zero-shot reasoners: Structure-orientated autonomous reasoning [52.83539473110143]
本稿では,Large Language Models (LLM) の質問をよりよく理解するための構造指向分析手法を提案する。
複雑な質問応答タスクの信頼性をさらに向上するために,多エージェント推論システム,構造指向自律推論エージェント(SARA)を提案する。
大規模な実験により,提案システムの有効性が検証された。
論文 参考訳(メタデータ) (2024-10-18T05:30:33Z) - Enhancing Logical Reasoning in Large Language Models through Graph-based Synthetic Data [53.433309883370974]
本研究では,大規模言語モデルの推論能力を高めるための学習信号としてグラフベースの合成推論データを使用することの可能性と限界について検討する。
2つの確立された自然言語推論タスクにおいて,合成グラフに基づく推論データによる教師付き微調整が,他の標準評価ベンチマークでの有効性を損なうことなく,LLMの推論性能を効果的に向上することを示した。
論文 参考訳(メタデータ) (2024-09-19T03:39:09Z) - Deconfounded Causality-aware Parameter-Efficient Fine-Tuning for Problem-Solving Improvement of LLMs [12.48241058167222]
大規模言語モデル(LLM)は、人間の指示に基づいて様々なタスクに取り組む際に、顕著な効率性を示した。
しかし、数学や物理学の限界など、推論を必要とするタスクに苦しむことが研究によって明らかになっている。
このことは、LLMが組み込み知識を本当に理解しているか、それとも、コンテンツに対する真の理解なしにトークン分布を複製することを学ぶだけなのかという疑問を提起する。
モデルの推論能力を高めるために,新しいパラメータ効率細調整法であるDecon Causal Adaptation (DCA)を提案する。
論文 参考訳(メタデータ) (2024-09-04T13:17:09Z) - Revisiting the Graph Reasoning Ability of Large Language Models: Case Studies in Translation, Connectivity and Shortest Path [53.71787069694794]
大規模言語モデル(LLM)のグラフ推論能力に着目する。
グラフ記述変換,グラフ接続,最短パス問題という3つの基本グラフタスクにおけるLLMの能力を再考する。
この結果から,LLMはテキスト記述によるグラフ構造理解に失敗し,これらの基本課題に対して様々な性能を示すことが可能であることが示唆された。
論文 参考訳(メタデータ) (2024-08-18T16:26:39Z) - Step-by-Step Reasoning to Solve Grid Puzzles: Where do LLMs Falter? [36.14795256060537]
複雑度が異なる274のグリッドベースパズルからなる評価データセットであるGridPuzzleを開発した。
第2に, GPT-4, Claude-3, Gemini, Mistral, Llama-2 など LLM の推論鎖を手動で解析した新しい誤り分類法を提案する。
第3に、大規模主観的評価のためのLLMベースのフレームワーク(すなわち、誤りを特定する)と客観的な指標であるPuzzleEvalを開発し、推論連鎖の正しさを評価する。
論文 参考訳(メタデータ) (2024-07-20T07:43:07Z) - Can LLM Graph Reasoning Generalize beyond Pattern Memorization? [46.93972334344908]
我々は,大規模言語モデル (LLM) が,合成学習データにおける意味的,数値的,構造的,推論パターンを超えうるか否かを評価し,実世界のグラフベースタスクにおける有用性を向上させる。
トレーニング後のアライメントが現実世界のタスクに最も有望であるのに対して、LLMグラフの推論をパターンを超えて行うことは、依然としてオープンな研究課題である。
論文 参考訳(メタデータ) (2024-06-23T02:59:15Z) - LogicAsker: Evaluating and Improving the Logical Reasoning Ability of Large Language Models [63.14196038655506]
大規模言語モデル(LLM)の論理的推論能力を評価・拡張するための新しいアプローチであるLogicAskerを紹介する。
提案手法は, LLMが論理規則を学習する際の大きなギャップを明らかにし, 異なるモデル間で29%から90%の推論失敗を識別する。
GPT-4oのようなモデルにおける論理的推論を最大5%向上させることで、これらの知見を活用して、ターゲットとなる実演例と微調整データを構築した。
論文 参考訳(メタデータ) (2024-01-01T13:53:53Z) - A Closer Look at the Self-Verification Abilities of Large Language Models in Logical Reasoning [73.77088902676306]
論理的推論の文脈において,大規模言語モデル(LLM)の自己検証能力について詳しく検討する。
本研究の主目的は,既存のLCMが誤った推論手順を正確に識別するのに苦労し,自己検証法の有効性を保証できないことにある。
論文 参考訳(メタデータ) (2023-11-14T07:13:10Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
大規模言語モデル(LLM)は、形式的知識表現(KR)システムの様々な制限を克服する能力を示した。
LLMは誘導的推論において最も優れているが、誘導的推論では最も効果が低い。
モデルの性能を評価するため,シングルタスクトレーニング,マルチタスクトレーニング,および「チェーンオブ思考」知識蒸留細調整技術について検討した。
論文 参考訳(メタデータ) (2023-10-02T01:00:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。