論文の概要: Enhancing Logical Reasoning in Large Language Models through Graph-based Synthetic Data
- arxiv url: http://arxiv.org/abs/2409.12437v1
- Date: Thu, 19 Sep 2024 03:39:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 14:52:37.439833
- Title: Enhancing Logical Reasoning in Large Language Models through Graph-based Synthetic Data
- Title(参考訳): グラフベース合成データによる大規模言語モデルにおける論理推論の強化
- Authors: Jiaming Zhou, Abbas Ghaddar, Ge Zhang, Liheng Ma, Yaochen Hu, Soumyasundar Pal, Mark Coates, Bin Wang, Yingxue Zhang, Jianye Hao,
- Abstract要約: 本研究では,大規模言語モデルの推論能力を高めるための学習信号としてグラフベースの合成推論データを使用することの可能性と限界について検討する。
2つの確立された自然言語推論タスクにおいて,合成グラフに基づく推論データによる教師付き微調整が,他の標準評価ベンチマークでの有効性を損なうことなく,LLMの推論性能を効果的に向上することを示した。
- 参考スコア(独自算出の注目度): 53.433309883370974
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite recent advances in training and prompting strategies for Large Language Models (LLMs), these models continue to face challenges with complex logical reasoning tasks that involve long reasoning chains. In this work, we explore the potential and limitations of using graph-based synthetic reasoning data as training signals to enhance LLMs' reasoning capabilities. Our extensive experiments, conducted on two established natural language reasoning tasks -- inductive reasoning and spatial reasoning -- demonstrate that supervised fine-tuning (SFT) with synthetic graph-based reasoning data effectively enhances LLMs' reasoning performance without compromising their effectiveness on other standard evaluation benchmarks.
- Abstract(参考訳): 近年のLarge Language Models (LLMs) のトレーニングと促進戦略の進歩にもかかわらず、これらのモデルは長い推論連鎖を含む複雑な論理的推論タスクの課題に直面し続けている。
本研究では,LLMの推論能力を高めるための学習信号としてグラフベースの合成推論データを使用することの可能性と限界について検討する。
帰納的推論(inductive reasoning)と空間的推論(spatial reasoning)という2つの確立された自然言語推論タスクに対して行った広範囲な実験により,合成グラフに基づく推論データを用いた教師付き微調整(SFT)が,他の標準評価ベンチマークでの有効性を損なうことなく,LLMの推論性能を効果的に向上することを示した。
関連論文リスト
- Reversal of Thought: Enhancing Large Language Models with Preference-Guided Reverse Reasoning Warm-up [9.42385235462794]
大規模言語モデル(LLM)は、推論タスクにおいて顕著な性能を示すが、数学的および複雑な論理的推論において制限に直面している。
LLMの論理的推論能力の向上を目的とした新しいフレームワークであるReversal of Thought (RoT)を提案する。
RoT は Preference-Guided Reverse Reasoning warm-up 戦略を利用している。
論文 参考訳(メタデータ) (2024-10-16T07:44:28Z) - The Role of Deductive and Inductive Reasoning in Large Language Models [35.43513487137371]
大規模言語モデル(LLM)は人工知能、特に推論タスクにおいて大きな進歩を遂げている。
本稿では, 帰納的推論と帰納的推論を動的に統合することにより, LLM推論を強化するDID法を提案する。
以上の結果から,DIDはLLMにおける推論のための,より堅牢で認知に整合した枠組みを提供する可能性が示唆された。
論文 参考訳(メタデータ) (2024-10-03T18:30:47Z) - Learning Planning-based Reasoning by Trajectories Collection and Process Reward Synthesizing [61.98556945939045]
収集された軌道上でのDPO(Direct Preference Optimization)を通して計画に基づく推論を学習するフレームワークを提案する。
論理的推論ベンチマークの挑戦的な結果から,学習フレームワークの有効性が示された。
論文 参考訳(メタデータ) (2024-02-01T15:18:33Z) - LLMs for Relational Reasoning: How Far are We? [8.840750655261251]
大規模言語モデル(LLM)は、下流タスクで最先端のパフォーマンスを達成することで、多くの領域に革命をもたらした。
近年の取り組みにより,LSMは逐次決定問題の解決に乏しいことが示されている。
論文 参考訳(メタデータ) (2024-01-17T08:22:52Z) - LogicAsker: Evaluating and Improving the Logical Reasoning Ability of Large Language Models [63.14196038655506]
大規模言語モデル(LLM)の論理的推論能力を評価・拡張するための新しいアプローチであるLogicAskerを紹介する。
提案手法は, LLMが論理規則を学習する際の大きなギャップを明らかにし, 異なるモデル間で29%から90%の推論失敗を識別する。
GPT-4oのようなモデルにおける論理的推論を最大5%向上させることで、これらの知見を活用して、ターゲットとなる実演例と微調整データを構築した。
論文 参考訳(メタデータ) (2024-01-01T13:53:53Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
大規模言語モデル(LLM)は、形式的知識表現(KR)システムの様々な制限を克服する能力を示した。
LLMは誘導的推論において最も優れているが、誘導的推論では最も効果が低い。
モデルの性能を評価するため,シングルタスクトレーニング,マルチタスクトレーニング,および「チェーンオブ思考」知識蒸留細調整技術について検討した。
論文 参考訳(メタデータ) (2023-10-02T01:00:50Z) - GraphReason: Enhancing Reasoning Capabilities of Large Language Models through A Graph-Based Verification Approach [0.0]
大きな言語モデル(LLM)は印象的な推論機能を示しています。
本稿では,LLMの推論能力をさらに向上するグラフベースの新しい手法を提案する。
論文 参考訳(メタデータ) (2023-08-18T03:12:59Z) - Exploring Self-supervised Logic-enhanced Training for Large Language Models [59.227222647741094]
本稿では,自己指導型ポストトレーニングによる論理的知識の活用の可能性について検討する。
我々はMERItの自己回帰的目的変数を考案し、パラメータサイズが30億から13億の2つのLLM系列、すなわちFLAN-T5とLLaMAと統合する。
2つの挑戦的な論理的推論ベンチマークの結果は、LogicLLMの有効性を示している。
論文 参考訳(メタデータ) (2023-05-23T06:13:10Z) - LogiGAN: Learning Logical Reasoning via Adversarial Pre-training [58.11043285534766]
本稿では,言語モデルの論理的推論能力を向上させるために,教師なしの対人事前学習フレームワークLogiGANを提案する。
人間の学習におけるリフレクティブ思考の促進効果に着想を得て,逆生成検証アーキテクチャを用いて学習思考過程をシミュレートする。
LogiGANで事前トレーニングされたベースモデルと大規模言語モデルの両方で、12のデータセットで明らかなパフォーマンス改善が示されている。
論文 参考訳(メタデータ) (2022-05-18T08:46:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。