論文の概要: Adapt Your Teacher: Improving Knowledge Distillation for Exemplar-free
Continual Learning
- arxiv url: http://arxiv.org/abs/2308.09544v1
- Date: Fri, 18 Aug 2023 13:22:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-21 12:55:14.352586
- Title: Adapt Your Teacher: Improving Knowledge Distillation for Exemplar-free
Continual Learning
- Title(参考訳): 教師に適応する: 模範のない連続学習のための知識蒸留の改善
- Authors: Filip Szatkowski, Mateusz Pyla, Marcin Przewi\k{e}\'zlikowski,
Sebastian Cygert, Bart{\l}omiej Twardowski, Tomasz Trzci\'nski
- Abstract要約: 本研究は, 知識蒸留(KD)を正規化戦略として応用した, 既成のクラスインクリメンタルラーニングについて検討する。
KDベースの手法はCILでうまく使われているが、以前のタスクからトレーニングデータの例にアクセスできることなくモデルを規則化するのに苦労することが多い。
近年の試験時間適応法に触発されて,インクリメンタルトレーニング中に教師とメインモデルを同時に更新する手法であるTeacher Adaptation (TA)を導入した。
- 参考スコア(独自算出の注目度): 14.379472108242235
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we investigate exemplar-free class incremental learning (CIL)
with knowledge distillation (KD) as a regularization strategy, aiming to
prevent forgetting. KD-based methods are successfully used in CIL, but they
often struggle to regularize the model without access to exemplars of the
training data from previous tasks. Our analysis reveals that this issue
originates from substantial representation shifts in the teacher network when
dealing with out-of-distribution data. This causes large errors in the KD loss
component, leading to performance degradation in CIL. Inspired by recent
test-time adaptation methods, we introduce Teacher Adaptation (TA), a method
that concurrently updates the teacher and the main model during incremental
training. Our method seamlessly integrates with KD-based CIL approaches and
allows for consistent enhancement of their performance across multiple
exemplar-free CIL benchmarks.
- Abstract(参考訳): 本研究では, 知識蒸留(KD)を正規化戦略とし, 忘れることの防止を目的とした, 模範的自由クラスインクリメンタルラーニング(CIL)について検討する。
KDベースの手法はCILでうまく使われているが、以前のタスクからトレーニングデータの例にアクセスできることなくモデルを規則化するのに苦労することが多い。
分析の結果,この問題は教師ネットワークにおける配布外データを扱う場合の表現変化に起因していることがわかった。
これにより、KD損失成分に大きなエラーが発生し、CILのパフォーマンスが低下する。
近年の試験時間適応法に触発されて,インクリメンタルトレーニング中に教師とメインモデルを同時に更新する手法であるTeacher Adaptation (TA)を導入した。
提案手法は KD ベースの CIL アプローチとシームレスに統合し,その性能を複数の例のない CIL ベンチマークで一貫した向上を可能にする。
関連論文リスト
- Speculative Knowledge Distillation: Bridging the Teacher-Student Gap Through Interleaved Sampling [81.00825302340984]
本研究では,高品質なトレーニングデータを生成するために,投機的知識蒸留(SKD)を導入する。
SKDでは、学生はトークンを提案し、教師はそれ自身の分布に基づいて低いランクのトークンを置き換える。
翻訳,要約,数学,指示文など,各種テキスト生成タスクにおけるSKDの評価を行った。
論文 参考訳(メタデータ) (2024-10-15T06:51:25Z) - Exploring and Enhancing the Transfer of Distribution in Knowledge Distillation for Autoregressive Language Models [62.5501109475725]
知識蒸留(KD)は、より小さな学生モデルを模倣するように訓練することで、大きな教師モデルを圧縮する技術である。
本稿では、教師ネットワークが小さなオンラインモジュールを統合し、学生モデルと同時学習するオンライン知識蒸留(OKD)について紹介する。
OKDは、様々なモデルアーキテクチャやサイズにおけるリードメソッドのパフォーマンスを達成または超え、トレーニング時間を最大4倍に短縮する。
論文 参考訳(メタデータ) (2024-09-19T07:05:26Z) - Relational Representation Distillation [6.24302896438145]
本稿では,教師モデルと学生モデルの関係を探求し,強化するためにRepresentation Distillation (RRD)を導入する。
自己監督学習の原則に触発されて、正確な複製と類似性に焦点を当てた、リラックスした対照的な損失を使用する。
我々は,CIFAR-100とImageNet ILSVRC-2012において優れた性能を示し,KDと組み合わせた場合,教師ネットワークよりも優れた性能を示す。
論文 参考訳(メタデータ) (2024-07-16T14:56:13Z) - Relative Difficulty Distillation for Semantic Segmentation [54.76143187709987]
我々は,Relative Difficulty Distillation (RDD) というセマンティックセグメンテーションのための画素レベルのKDパラダイムを提案する。
RDDにより、教師ネットワークは、追加の最適化目標を伴わずに、学習焦点に対する効果的なガイダンスを提供することができる。
我々の研究は、RDDが既存のKDメソッドと統合して、上位パフォーマンスバウンダリを改善できることを示します。
論文 参考訳(メタデータ) (2024-07-04T08:08:25Z) - Comparative Knowledge Distillation [102.35425896967791]
伝統的な知識蒸留(KD)は、頻繁な推論のために教師モデルに容易にアクセスできることを前提としている。
本稿では,教師モデルにおけるサンプルの解釈の微妙な違いを学生モデルに理解させるための比較知識蒸留(CKD)を提案する。
CKDは、アートデータ拡張とKDテクニックの状態を一貫して上回る。
論文 参考訳(メタデータ) (2023-11-03T21:55:33Z) - On-Policy Distillation of Language Models: Learning from Self-Generated
Mistakes [44.97759066341107]
一般知識蒸留(GKD)は、教師からのフィードバックを活用して、学生を自己生成出力シーケンスで訓練する。
本稿では,自動回帰言語モデルの要約,翻訳,算術的推論におけるGKDの有効性を示す。
論文 参考訳(メタデータ) (2023-06-23T17:56:26Z) - ALM-KD: Knowledge Distillation with noisy labels via adaptive loss
mixing [25.49637460661711]
知識蒸留は、教師付き環境で学生モデルを訓練するために、事前訓練されたモデルの出力を使用する技術である。
KD中の適応損失混合方式を用いてこの問題に対処する。
提案手法は, 標準KD設定, マルチ教師, 自己蒸留設定において, 提案手法を用いて得られた性能向上を示す。
論文 参考訳(メタデータ) (2022-02-07T14:53:22Z) - Confidence Conditioned Knowledge Distillation [8.09591217280048]
教師モデルから学生モデルに知識を伝達するための信頼性条件付き知識蒸留(CCKD)方式を提案する。
CCKDは、教師モデルに割り当てられた信頼度を正しいクラスに利用して、サンプル固有の損失関数とターゲットを考案することで、これらの問題に対処する。
いくつかのベンチマークデータセットに対する実証的な評価は、CCKD法が他の最先端手法と同等以上の一般化性能を達成していることを示している。
論文 参考訳(メタデータ) (2021-07-06T00:33:25Z) - Always Be Dreaming: A New Approach for Data-Free Class-Incremental
Learning [73.24988226158497]
データフリークラスインクリメンタルラーニング(DFCIL)における高インパクト問題について考察する。
そこで本研究では, 改良型クロスエントロピートレーニングと重要重み付き特徴蒸留に寄与するDFCILの新たなインクリメンタル蒸留戦略を提案する。
本手法は,共通クラスインクリメンタルベンチマークにおけるSOTA DFCIL法と比較して,最終タスク精度(絶対差)が25.1%向上する。
論文 参考訳(メタデータ) (2021-06-17T17:56:08Z) - Heterogeneous Knowledge Distillation using Information Flow Modeling [82.83891707250926]
教師モデルの様々な層を流れる情報の流れをモデル化して機能する新しいKD手法を提案する。
提案手法は, トレーニング過程の異なる段階において, 適切な監督手法を用いて, 上記の制限を克服することができる。
論文 参考訳(メタデータ) (2020-05-02T06:56:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。