論文の概要: MindMap: Knowledge Graph Prompting Sparks Graph of Thoughts in Large
Language Models
- arxiv url: http://arxiv.org/abs/2308.09729v4
- Date: Fri, 15 Sep 2023 12:49:00 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-18 17:47:03.067763
- Title: MindMap: Knowledge Graph Prompting Sparks Graph of Thoughts in Large
Language Models
- Title(参考訳): mindmap: 知識グラフプロンプト - 大規模言語モデルにおける思考グラフの火花
- Authors: Yilin Wen, Zifeng Wang, Jimeng Sun
- Abstract要約: 我々は、KG入力を解釈し、暗黙の知識と検索された外部知識を組み合わせて推論する能力を備えたLCMを実現するプロンプトパイプラインを構築した。
実験では、MindMapのプロンプトは、目覚ましい経験的な利益をもたらす。例えば、MindMapでGPT-3.5をプロンプトすると、GPT-4よりも圧倒的なパフォーマンスが得られる。
- 参考スコア(独自算出の注目度): 34.43660759521586
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: LLMs usually exhibit limitations in their ability to incorporate new
knowledge, the generation of hallucinations, and the transparency of their
decision-making process. In this paper, we explore how to prompt LLMs with
knowledge graphs (KG), working as a remedy to engage LLMs with up-to-date
knowledge and elicit the reasoning pathways from LLMs. Specifically, we build a
prompting pipeline that endows LLMs with the capability of comprehending KG
inputs and inferring with a combined implicit knowledge and the retrieved
external knowledge. In addition, we investigate eliciting the mind map on which
LLMs perform the reasoning and generate the answers. It is identified that the
produced mind map exhibits the reasoning pathways of LLMs grounded on the
ontology of knowledge, hence bringing the prospects of probing and gauging LLM
inference in production. The experiments on three question & answering datasets
also show that MindMap prompting leads to a striking empirical gain. For
instance, prompting a GPT-3.5 with MindMap yields an overwhelming performance
over GPT-4 consistently. We also demonstrate that with structured facts
retrieved from KG, MindMap can outperform a series of
prompting-with-document-retrieval methods, benefiting from more accurate,
concise, and comprehensive knowledge from KGs. To reproduce our results and
extend the framework further, we make our codebase available at
https://github.com/wyl.willing/MindMap.
- Abstract(参考訳): LLMは、通常、新しい知識を取り入れる能力、幻覚の生成、意思決定プロセスの透明性の限界を示す。
本稿では,LLMを知識グラフ(KG)で促進する方法について検討し,LLMを最新の知識で活用し,LLMから推論経路を引き出すための対策として機能する。
具体的には、KG入力を解釈し、暗黙の知識と抽出した外部知識を組み合わせて推論する能力を備えたLLMを実現するプロンプトパイプラインを構築する。
さらに,LLMが推論を行うマインドマップを抽出し,回答を生成する。
生成したマインドマップは、知識のオントロジーに基づくLLMの推論経路を示しており、それによって、生産におけるLLM推論の探索と拡大の見通しがもたらされる。
3つの質問と回答データセットに関する実験では、マインドマップのプロンプトが経験的な成果をもたらすことも示されている。
例えば、MindMap で GPT-3.5 をプロンプトすると、GPT-4 よりも圧倒的なパフォーマンスが得られる。
また、KGから抽出した構造化事実により、MindMapは、KGsのより正確で簡潔で包括的な知識の恩恵を受けながら、一連のプロンプト・ウィズ・ドキュメンテーション・検索手法より優れていることを示す。
結果を再現し、フレームワークをさらに拡張するために、コードベースはhttps://github.com/wyl.willing/MindMap.comで公開しています。
関連論文リスト
- Knowledge Graphs, Large Language Models, and Hallucinations: An NLP Perspective [5.769786334333616]
大規模言語モデル(LLM)は、自動テキスト生成や質問応答などを含む自然言語処理(NLP)ベースのアプリケーションに革命をもたらした。
幻覚では、モデルがもっともらしい音を出すが、実際には正しくない反応を生成する。
本稿では,現状のデータセットやベンチマーク,知識統合や幻覚評価の手法など,これらのオープンな課題について論じる。
論文 参考訳(メタデータ) (2024-11-21T16:09:05Z) - Rethinking Visual Prompting for Multimodal Large Language Models with External Knowledge [76.45868419402265]
マルチモーダルな大言語モデル(MLLM)は、膨大な高品質の画像テキストデータセットをトレーニングすることで、大きな進歩を遂げている。
しかし、マスクのような細粒度や空間的に密集した情報をテキストで明示的に伝達することの難しさは、MLLMにとって困難である。
本稿では、特殊な視覚モデルから派生した細粒度の外部知識をMLLMに統合する新しい視覚的プロンプト手法を提案する。
論文 参考訳(メタデータ) (2024-07-05T17:43:30Z) - Knowledge Graph-Enhanced Large Language Models via Path Selection [58.228392005755026]
大規模言語モデル(LLM)は、様々な現実世界のアプリケーションで前例のない性能を示している。
LLMは実際に不正確な出力、すなわち幻覚の問題を発生させることが知られている。
上記の問題に対処する3段階の原理的フレームワークKELPを提案する。
論文 参考訳(メタデータ) (2024-06-19T21:45:20Z) - FAC$^2$E: Better Understanding Large Language Model Capabilities by Dissociating Language and Cognition [56.76951887823882]
大規模言語モデル(LLM)は、主に様々なテキスト理解および生成タスクにおける全体的なパフォーマンスによって評価される。
FAC$2$E, FAC$2$Eについて述べる。
論文 参考訳(メタデータ) (2024-02-29T21:05:37Z) - Large Language Models Can Better Understand Knowledge Graphs Than We Thought [13.336418752729987]
知識グラフ(KG) モデルパラメータの埋め込みはますますコストがかかる。
現在のプロンプト方式は、しばしばトライアル・アンド・エラー方式に依存している。
非順序線形化三重項は、流線型NLテキストと比較して、LLMのKG理解に有効であることを示す。
論文 参考訳(メタデータ) (2024-02-18T10:44:03Z) - A Comprehensive Study of Knowledge Editing for Large Language Models [82.65729336401027]
大規模言語モデル(LLM)は、人間のコミュニケーションを忠実に反映したテキストの理解と生成の素晴らしい能力を示している。
本稿では,知識編集の問題を定義し,最先端アプローチの包括的レビューを行う。
我々は,代表的知識編集アプローチの総合的評価のための新しいベンチマークであるKnowEditを紹介した。
論文 参考訳(メタデータ) (2024-01-02T16:54:58Z) - KnowledgeNavigator: Leveraging Large Language Models for Enhanced
Reasoning over Knowledge Graph [11.808990571175269]
大規模言語モデル(LLM)は、その強力な自然言語理解とゼロショット能力によって、様々な下流タスクにおいて優れたパフォーマンスを達成しているが、LLMは依然として知識制限に悩まされている。
本稿では,知識グラフから外部知識を効率的に正確に検索し,これらの課題に対処する新しいフレームワークであるKnowledgeNavigatorを提案する。
我々は,複数のKGQAベンチマーク上でKnowledgeNavigatorを評価し,そのフレームワークの有効性と一般化を実証した。
論文 参考訳(メタデータ) (2023-12-26T04:22:56Z) - On Exploring the Reasoning Capability of Large Language Models with
Knowledge Graphs [11.878708460150726]
学習前の知識グラフからの情報をリコールする際のLLMの精度について2つの研究質問を定式化する。
これらの問題に対処するため,LLMを用いて4つの知識グラフ推論タスクを実行する。
実験の結果, LLMは, 単純かつ複雑な知識グラフ推論タスクを自身のメモリから処理できることがわかった。
論文 参考訳(メタデータ) (2023-12-01T05:08:47Z) - Investigating the Factual Knowledge Boundary of Large Language Models with Retrieval Augmentation [109.8527403904657]
大規模言語モデル(LLM)は,その知識に対する信頼度が低く,内部知識と外部知識の衝突をうまく扱えないことを示す。
検索の強化は、LLMの知識境界に対する認識を高める効果的なアプローチであることが証明されている。
本稿では,文書を動的に活用するための簡易な手法を提案する。
論文 参考訳(メタデータ) (2023-07-20T16:46:10Z) - Unifying Large Language Models and Knowledge Graphs: A Roadmap [61.824618473293725]
大規模言語モデル(LLM)は、自然言語処理と人工知能の分野で新たな波を発生させている。
知識グラフ(KG)、ウィキペディア、フアプ(英語版)は、豊富な事実知識を明示的に記憶する構造化された知識モデルである。
論文 参考訳(メタデータ) (2023-06-14T07:15:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。