論文の概要: LEGO: Learning and Graph-Optimized Modular Tracker for Online Multi-Object Tracking with Point Clouds
- arxiv url: http://arxiv.org/abs/2308.09908v3
- Date: Thu, 4 Jul 2024 16:18:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-09 01:01:54.531794
- Title: LEGO: Learning and Graph-Optimized Modular Tracker for Online Multi-Object Tracking with Point Clouds
- Title(参考訳): LEGO: ポイントクラウドによるオンラインマルチオブジェクトトラッキングのための学習とグラフ最適化モジュールトラッカー
- Authors: Zhenrong Zhang, Jianan Liu, Yuxuan Xia, Tao Huang, Qing-Long Han, Hongbin Liu,
- Abstract要約: 本稿では,データアソシエーション性能を向上させるための学習とグラフ最適化(LEGO)モジュールトラッカーを提案する。
提案するLEGOトラッカーは,グラフ最適化と自己認識機構を統合し,アソシエーションスコアマップを効率的に定式化する。
提案手法は,他のオンライントラッキング手法と比較して,優れた性能を示した。
- 参考スコア(独自算出の注目度): 20.72568357569427
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Online multi-object tracking (MOT) plays a pivotal role in autonomous systems. The state-of-the-art approaches usually employ a tracking-by-detection method, and data association plays a critical role. This paper proposes a learning and graph-optimized (LEGO) modular tracker to improve data association performance in the existing literature. The proposed LEGO tracker integrates graph optimization and self-attention mechanisms, which efficiently formulate the association score map, facilitating the accurate and efficient matching of objects across time frames. To further enhance the state update process, the Kalman filter is added to ensure consistent tracking by incorporating temporal coherence in the object states. Our proposed method utilizing LiDAR alone has shown exceptional performance compared to other online tracking approaches, including LiDAR-based and LiDAR-camera fusion-based methods. LEGO ranked 1st at the time of submitting results to KITTI object tracking evaluation ranking board and remains 2nd at the time of submitting this paper, among all online trackers in the KITTI MOT benchmark for cars1
- Abstract(参考訳): オンラインマルチオブジェクトトラッキング(MOT)は、自律システムにおいて重要な役割を果たす。
最先端のアプローチは通常、トラッキング・バイ・検出方式を採用し、データアソシエーションが重要な役割を果たす。
本稿では,既存の文献におけるデータ関連性を改善するために,学習とグラフ最適化(LEGO)モジュールトラッカーを提案する。
提案するLEGOトラッカーはグラフ最適化と自己認識機構を統合し,関連スコアマップを効率的に定式化し,時間枠間のオブジェクトの正確なマッチングを容易にする。
状態更新プロセスをさらに強化するため、オブジェクト状態に時間的コヒーレンスを組み込むことで、一貫したトラッキングを保証するために、Kalmanフィルタが追加される。
提案手法は,LiDARとLiDARの融合方式を含む他のオンライン追跡手法と比較して,優れた性能を示した。
LEGOは、KITTIオブジェクトトラッキング評価ランキングボードに結果が提出された時点で第1位であり、本論文提出時点では、KITTI MOTベンチマーク1のオンライントラッカーの中で第2位にとどまっている。
関連論文リスト
- Hierarchical IoU Tracking based on Interval [21.555469501789577]
マルチオブジェクト追跡(MOT)は、フレーム間で与えられたクラスのすべてのターゲットを検出し、関連付けることを目的としている。
HITと呼ばれる階層型IoU追跡フレームワークを提案し、トラックレット間隔を先行として利用して階層型追跡を実現する。
提案手法は,MOT17,KITTI,DanceTrack,VisDroneの4つのデータセットに対して有望な性能を実現する。
論文 参考訳(メタデータ) (2024-06-19T07:03:18Z) - Autoregressive Queries for Adaptive Tracking with Spatio-TemporalTransformers [55.46413719810273]
リッチ時間情報は、視覚追跡における複雑なターゲットの出現に不可欠である。
提案手法は,6つの一般的な追跡ベンチマークにおいてトラッカーの性能を向上させる。
論文 参考訳(メタデータ) (2024-03-15T02:39:26Z) - S$^3$Track: Self-supervised Tracking with Soft Assignment Flow [45.77333923477176]
ビデオレベルのアソシエーションラベルを使わずに、自己監督型複数物体追跡について検討する。
オブジェクトアソシエーションのための微分可能なソフトオブジェクト割り当てを提案する。
提案手法は,KITTI,nuScenes,Argoverseのデータセットを用いて評価する。
論文 参考訳(メタデータ) (2023-05-17T06:25:40Z) - Multi-Object Tracking by Iteratively Associating Detections with Uniform
Appearance for Trawl-Based Fishing Bycatch Monitoring [22.228127377617028]
漁業活動における漁獲監視の目的は、映像から魚の標的をリアルタイムで検出し、追跡し、分類することである。
本稿では,既存の観測中心追跡アルゴリズムに基づく新しいMOT手法を提案する。
本手法は,海洋魚種群およびMOT17種群において,一様外観の追跡目標の性能向上と最先端技術の向上を図っている。
論文 参考訳(メタデータ) (2023-04-10T18:55:10Z) - An Effective Motion-Centric Paradigm for 3D Single Object Tracking in
Point Clouds [50.19288542498838]
LiDARポイントクラウド(LiDAR SOT)における3Dシングルオブジェクトトラッキングは、自動運転において重要な役割を果たす。
現在のアプローチはすべて、外観マッチングに基づくシームズパラダイムに従っている。
我々は新たな視点からLiDAR SOTを扱うための動き中心のパラダイムを導入する。
論文 参考訳(メタデータ) (2023-03-21T17:28:44Z) - 3DMODT: Attention-Guided Affinities for Joint Detection & Tracking in 3D
Point Clouds [95.54285993019843]
本稿では,3次元点雲における複数物体の同時検出と追跡手法を提案する。
本モデルでは,複数のフレームを用いた時間情報を利用してオブジェクトを検出し,一つのネットワーク上で追跡する。
論文 参考訳(メタデータ) (2022-11-01T20:59:38Z) - Joint Spatial-Temporal and Appearance Modeling with Transformer for
Multiple Object Tracking [59.79252390626194]
本稿ではTransSTAMという新しい手法を提案する。Transformerを利用して各オブジェクトの外観特徴とオブジェクト間の空間的時間的関係の両方をモデル化する。
提案手法はMOT16, MOT17, MOT20を含む複数の公開ベンチマークで評価され, IDF1とHOTAの両方で明確な性能向上を実現している。
論文 参考訳(メタデータ) (2022-05-31T01:19:18Z) - Joint Feature Learning and Relation Modeling for Tracking: A One-Stream
Framework [76.70603443624012]
特徴学習と関係モデリングを統合した新しい一ストリーム追跡(OSTrack)フレームワークを提案する。
このようにして、相互誘導により識別的目標指向特徴を動的に抽出することができる。
OSTrackは、複数のベンチマークで最先端のパフォーマンスを実現しており、特に、ワンショットトラッキングベンチマークのGOT-10kでは印象的な結果を示している。
論文 参考訳(メタデータ) (2022-03-22T18:37:11Z) - Online Multiple Object Tracking with Cross-Task Synergy [120.70085565030628]
位置予測と埋め込み結合の相乗効果を考慮した新しい統一モデルを提案する。
この2つのタスクは、時間認識対象の注意と注意の注意、およびアイデンティティ認識メモリ集約モデルによってリンクされる。
論文 参考訳(メタデータ) (2021-04-01T10:19:40Z) - Model-free Vehicle Tracking and State Estimation in Point Cloud
Sequences [17.351635242415703]
モデルフリーの単一オブジェクト追跡(SOT)という、この問題の新しい設定について研究する。
SOTは第1フレームのオブジェクト状態を入力とし、その後のフレームにおける状態推定と追跡を共同で解決する。
そこで我々は,点群登録,車両形状,動作優先度に基づく最適化アルゴリズムSOTrackerを提案する。
論文 参考訳(メタデータ) (2021-03-10T13:01:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。