AltNeRF: Learning Robust Neural Radiance Field via Alternating
Depth-Pose Optimization
- URL: http://arxiv.org/abs/2308.10001v2
- Date: Fri, 23 Feb 2024 12:45:05 GMT
- Title: AltNeRF: Learning Robust Neural Radiance Field via Alternating
Depth-Pose Optimization
- Authors: Kun Wang, Zhiqiang Yan, Huang Tian, Zhenyu Zhang, Xiang Li, Jun Li and
Jian Yang
- Abstract summary: AltNeRF is a novel framework designed to create resilient NeRF representations without relying on known camera poses.
We introduce an alternating algorithm that harmoniously melds NeRF outputs into.
SMDE through a consistence-driven mechanism, thus enhancing the.
integrity of depth priors.
Experiments showcase the compelling capabilities of AltNeRF in generating high-fidelity and robust novel views.
- Score: 25.44715538841181
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Neural Radiance Fields (NeRF) have shown promise in generating realistic
novel views from sparse scene images. However, existing NeRF approaches often
encounter challenges due to the lack of explicit 3D supervision and imprecise
camera poses, resulting in suboptimal outcomes. To tackle these issues, we
propose AltNeRF -- a novel framework designed to create resilient NeRF
representations using self-supervised monocular depth estimation (SMDE) from
monocular videos, without relying on known camera poses. SMDE in AltNeRF
masterfully learns depth and pose priors to regulate NeRF training. The depth
prior enriches NeRF's capacity for precise scene geometry depiction, while the
pose prior provides a robust starting point for subsequent pose refinement.
Moreover, we introduce an alternating algorithm that harmoniously melds NeRF
outputs into SMDE through a consistence-driven mechanism, thus enhancing the
integrity of depth priors. This alternation empowers AltNeRF to progressively
refine NeRF representations, yielding the synthesis of realistic novel views.
Extensive experiments showcase the compelling capabilities of AltNeRF in
generating high-fidelity and robust novel views that closely resemble reality.
Related papers
- SSNeRF: Sparse View Semi-supervised Neural Radiance Fields with Augmentation [21.454340647455236]
SSNeRF is a sparse view semi supervised NeRF method based on a teacher student framework.
Our key idea is to challenge the NeRF module with progressively severe sparse view degradation.
In this approach, the teacher NeRF generates novel views along with confidence scores, while the student NeRF, perturbed by the augmented input, learns from the high confidence pseudo labels.
arXiv Detail & Related papers (2024-08-17T09:00:37Z) - Self-Evolving Neural Radiance Fields [31.124406548504794]
We propose a novel framework, dubbed Self-Evolving Neural Radiance Fields (SE-NeRF), that applies a self-training framework to neural radiance field (NeRF)
We formulate few-shot NeRF into a teacher-student framework to guide the network to learn a more robust representation of the scene.
We show and evaluate that applying our self-training framework to existing models improves the quality of the rendered images and achieves state-of-the-art performance in multiple settings.
arXiv Detail & Related papers (2023-12-02T02:28:07Z) - From NeRFLiX to NeRFLiX++: A General NeRF-Agnostic Restorer Paradigm [57.73868344064043]
We propose NeRFLiX, a general NeRF-agnostic restorer paradigm that learns a degradation-driven inter-viewpoint mixer.
We also present NeRFLiX++ with a stronger two-stage NeRF degradation simulator and a faster inter-viewpoint mixer.
NeRFLiX++ is capable of restoring photo-realistic ultra-high-resolution outputs from noisy low-resolution NeRF-rendered views.
arXiv Detail & Related papers (2023-06-10T09:19:19Z) - Clean-NeRF: Reformulating NeRF to account for View-Dependent
Observations [67.54358911994967]
This paper proposes Clean-NeRF for accurate 3D reconstruction and novel view rendering in complex scenes.
Clean-NeRF can be implemented as a plug-in that can immediately benefit existing NeRF-based methods without additional input.
arXiv Detail & Related papers (2023-03-26T12:24:31Z) - DehazeNeRF: Multiple Image Haze Removal and 3D Shape Reconstruction
using Neural Radiance Fields [56.30120727729177]
We introduce DehazeNeRF as a framework that robustly operates in hazy conditions.
We demonstrate successful multi-view haze removal, novel view synthesis, and 3D shape reconstruction where existing approaches fail.
arXiv Detail & Related papers (2023-03-20T18:03:32Z) - NeRFLiX: High-Quality Neural View Synthesis by Learning a
Degradation-Driven Inter-viewpoint MiXer [44.220611552133036]
We propose NeRFLiX, a general NeRF-agnostic restorer paradigm by learning a degradation-driven inter-viewpoint mixer.
We also propose an inter-viewpoint aggregation framework that is able to fuse highly related high-quality training images.
arXiv Detail & Related papers (2023-03-13T08:36:30Z) - Self-NeRF: A Self-Training Pipeline for Few-Shot Neural Radiance Fields [17.725937326348994]
We propose Self-NeRF, a self-evolved NeRF that iteratively refines the radiance fields with very few number of input views.
In each iteration, we label unseen views with the predicted colors or warped pixels generated by the model from the preceding iteration.
These expanded pseudo-views are afflicted by imprecision in color and warping artifacts, which degrades the performance of NeRF.
arXiv Detail & Related papers (2023-03-10T08:22:36Z) - NerfDiff: Single-image View Synthesis with NeRF-guided Distillation from
3D-aware Diffusion [107.67277084886929]
Novel view synthesis from a single image requires inferring occluded regions of objects and scenes whilst simultaneously maintaining semantic and physical consistency with the input.
We propose NerfDiff, which addresses this issue by distilling the knowledge of a 3D-aware conditional diffusion model (CDM) into NeRF through synthesizing and refining a set of virtual views at test time.
We further propose a novel NeRF-guided distillation algorithm that simultaneously generates 3D consistent virtual views from the CDM samples, and finetunes the NeRF based on the improved virtual views.
arXiv Detail & Related papers (2023-02-20T17:12:00Z) - Aug-NeRF: Training Stronger Neural Radiance Fields with Triple-Level
Physically-Grounded Augmentations [111.08941206369508]
We propose Augmented NeRF (Aug-NeRF), which for the first time brings the power of robust data augmentations into regularizing the NeRF training.
Our proposal learns to seamlessly blend worst-case perturbations into three distinct levels of the NeRF pipeline.
Aug-NeRF effectively boosts NeRF performance in both novel view synthesis and underlying geometry reconstruction.
arXiv Detail & Related papers (2022-07-04T02:27:07Z) - BARF: Bundle-Adjusting Neural Radiance Fields [104.97810696435766]
We propose Bundle-Adjusting Neural Radiance Fields (BARF) for training NeRF from imperfect camera poses.
BARF can effectively optimize the neural scene representations and resolve large camera pose misalignment at the same time.
This enables view synthesis and localization of video sequences from unknown camera poses, opening up new avenues for visual localization systems.
arXiv Detail & Related papers (2021-04-13T17:59:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.