論文の概要: EDDense-Net: Fully Dense Encoder Decoder Network for Joint Segmentation
of Optic Cup and Disc
- arxiv url: http://arxiv.org/abs/2308.10192v1
- Date: Sun, 20 Aug 2023 07:45:03 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-22 17:10:27.734097
- Title: EDDense-Net: Fully Dense Encoder Decoder Network for Joint Segmentation
of Optic Cup and Disc
- Title(参考訳): EDDense-Net: オプティカルカップとディスクの同時分割のための完全高密度エンコーダデコーダネットワーク
- Authors: Mehwish Mehmood, Khuram Naveed, Haroon Ahmed Khan, Syed S. Naqvi
- Abstract要約: 緑内障(英: Glaucoma)は、視神経に損傷を与える眼疾患であり、視覚障害と永久盲眼を引き起こす。
緑内障の診断には、光ディスク(OD)検査におけるカップ・ツー・ディスク比(CDR)の推定が用いられる。
OCとODの結合分割のためのEDDense-Netセグメンテーションネットワークを提案する。
- 参考スコア(独自算出の注目度): 0.3277163122167433
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Glaucoma is an eye disease that causes damage to the optic nerve, which can
lead to visual loss and permanent blindness. Early glaucoma detection is
therefore critical in order to avoid permanent blindness. The estimation of the
cup-to-disc ratio (CDR) during an examination of the optical disc (OD) is used
for the diagnosis of glaucoma. In this paper, we present the EDDense-Net
segmentation network for the joint segmentation of OC and OD. The encoder and
decoder in this network are made up of dense blocks with a grouped
convolutional layer in each block, allowing the network to acquire and convey
spatial information from the image while simultaneously reducing the network's
complexity. To reduce spatial information loss, the optimal number of filters
in all convolution layers were utilised. In semantic segmentation, dice pixel
classification is employed in the decoder to alleviate the problem of class
imbalance. The proposed network was evaluated on two publicly available
datasets where it outperformed existing state-of-the-art methods in terms of
accuracy and efficiency. For the diagnosis and analysis of glaucoma, this
method can be used as a second opinion system to assist medical
ophthalmologists.
- Abstract(参考訳): 緑内障(英: Glaucoma)は、視神経に損傷を与える眼疾患であり、視覚障害と永久盲眼を引き起こす。
したがって、早期緑内障検出は永久盲目を避けるために重要である。
緑内障の診断には、光ディスク(OD)検査におけるカップ・ツー・ディスク比(CDR)の推定が用いられる。
本稿では,OCとODの結合分割のためのEDDense-Netセグメンテーションネットワークを提案する。
このネットワークのエンコーダとデコーダは、各ブロックにグループ化された畳み込み層を持つ密ブロックで構成されており、同時にネットワークの複雑さを低減しつつ、画像から空間情報を取得、伝達することができる。
空間情報損失を低減するため,全ての畳み込み層におけるフィルタの最適数を利用した。
セマンティックセグメンテーションでは、クラス不均衡の問題を軽減するためにデコーダにダイスピクセル分類を用いる。
提案するネットワークは2つの公開データセットで評価され、精度と効率の点で既存の最先端手法を上回っていた。
緑内障の診断と解析には、医用眼科医を支援するための第2の意見システムとして使用できる。
関連論文リスト
- LMBF-Net: A Lightweight Multipath Bidirectional Focal Attention Network for Multifeatures Segmentation [15.091476025563528]
網膜疾患は、早期に診断や治療を受けなければ、両眼で不可逆的な視力喪失を引き起こす可能性がある。
多くのラベルや属性で網膜画像をセグメント化するための現在のディープラーニング技術は、検出精度と一般性に乏しい。
本稿では,多機能セグメンテーションのためのマルチパス畳み込みニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2024-07-03T07:37:09Z) - UT-Net: Combining U-Net and Transformer for Joint Optic Disc and Cup
Segmentation and Glaucoma Detection [0.0]
緑内障は慢性の視覚疾患であり、永久的な不可逆性視覚障害を引き起こす可能性がある。
緑内障の早期発見には,カップ・ツー・ディスク比(CDR)の測定が重要な役割を担っている。
我々はUT-Netと呼ばれる新しいセグメンテーションパイプラインを提案し、U-Netとトランスフォーマーの双方の利点をエンコーディング層で利用し、次にアテンションゲートバイ線形融合方式を提案する。
論文 参考訳(メタデータ) (2023-03-08T23:21:19Z) - BCS-Net: Boundary, Context and Semantic for Automatic COVID-19 Lung
Infection Segmentation from CT Images [83.82141604007899]
BCS-Netは、CT画像から自動的に新型コロナウイルスの肺感染症を分離するための新しいネットワークである。
BCS-Netはエンコーダ-デコーダアーキテクチャに従っており、多くの設計はデコーダのステージに焦点を当てている。
BCSRブロックでは、アテンション誘導グローバルコンテキスト(AGGC)モジュールがデコーダの最も価値のあるエンコーダ機能を学ぶように設計されている。
論文 参考訳(メタデータ) (2022-07-17T08:54:07Z) - Discriminative Kernel Convolution Network for Multi-Label Ophthalmic
Disease Detection on Imbalanced Fundus Image Dataset [13.687617973585983]
緑内障、糖尿病網膜症、白内障などの眼疾患が世界中の視覚障害の主な原因である。
本研究は,識別的カーネル畳み込みネットワーク (DKCNet) を提案する。
また、全く見えない眼底像にも良い効果が認められる。
論文 参考訳(メタデータ) (2022-07-16T12:03:27Z) - SPNet: A novel deep neural network for retinal vessel segmentation based
on shared decoder and pyramid-like loss [13.021014899410684]
畳み込みニューラルネットワークは 血管構造を抽出する 重要な能力を示した
本稿では,共有デコーダとピラミッド様損失に基づく網膜血管セグメンテーションのための新しいディープニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2022-02-19T03:44:34Z) - MTCD: Cataract Detection via Near Infrared Eye Images [69.62768493464053]
白内障は一般的な眼疾患であり、盲目や視力障害の主な原因の1つである。
近赤外画像を用いた白内障検出のための新しいアルゴリズムを提案する。
深層学習に基づくアイセグメンテーションとマルチタスクネットワーク分類ネットワークについて述べる。
論文 参考訳(メタデータ) (2021-10-06T08:10:28Z) - Assessing glaucoma in retinal fundus photographs using Deep Feature
Consistent Variational Autoencoders [63.391402501241195]
緑内障は症状が重くなるまで無症状のままでいるため、検出が困難である。
緑内障の早期診断は機能的,構造的,臨床的評価に基づいて行われることが多い。
ディープラーニング手法はこのジレンマを、マーカー識別段階をバイパスし、ハイレベルな情報を分析してデータを分類することで部分的に解決している。
論文 参考訳(メタデータ) (2021-10-04T16:06:49Z) - Transfer Learning Through Weighted Loss Function and Group Normalization
for Vessel Segmentation from Retinal Images [0.0]
血管の血管構造は緑内障や糖尿病網膜症などの網膜疾患の診断に重要である。
深層学習とトランスファー学習を併用した網膜血管のセグメンテーション手法を提案する。
提案手法は,他の手法よりもセグメンテーション精度が高い。
論文 参考訳(メタデータ) (2020-12-16T20:34:48Z) - D-Unet: A Dual-encoder U-Net for Image Splicing Forgery Detection and
Localization [108.8592577019391]
画像スプライシング偽造検出は、画像指紋によって改ざんされた領域と非改ざんされた領域を区別するグローバルバイナリ分類タスクである。
画像スプライシングフォージェリ検出のためのデュアルエンコーダU-Net(D-Unet)という,固定されていないエンコーダと固定エンコーダを用いた新しいネットワークを提案する。
D-Unetと最先端技術の比較実験において、D-Unetは画像レベルおよび画素レベルの検出において他の手法よりも優れていた。
論文 参考訳(メタデータ) (2020-12-03T10:54:02Z) - NuI-Go: Recursive Non-Local Encoder-Decoder Network for Retinal Image
Non-Uniform Illumination Removal [96.12120000492962]
網膜画像の画質は、眼の病変や不完全な画像処理のために臨床的に不満足であることが多い。
網膜画像における最も難しい品質劣化問題の1つは、一様でない照明である。
我々はNuI-Goと呼ばれる網膜画像に対する均一でない照明除去ネットワークを提案する。
論文 参考訳(メタデータ) (2020-08-07T04:31:33Z) - Inf-Net: Automatic COVID-19 Lung Infection Segmentation from CT Images [152.34988415258988]
CT画像からの肺感染症の自動検出は、新型コロナウイルスに対処するための従来の医療戦略を強化する大きな可能性を秘めている。
CTスライスから感染領域を分割することは、高い感染特性の変化、感染と正常な組織の間の低強度のコントラストなど、いくつかの課題に直面している。
これらの課題に対処するため, 胸部CTスライスから感染部位を自動的に同定する, 新型のCOVID-19 Deep Lung infection Network (Inf-Net) が提案されている。
論文 参考訳(メタデータ) (2020-04-22T07:30:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。