論文の概要: SE(3) Equivariant Augmented Coupling Flows
- arxiv url: http://arxiv.org/abs/2308.10364v4
- Date: Tue, 28 Nov 2023 14:20:28 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-30 15:11:54.441308
- Title: SE(3) Equivariant Augmented Coupling Flows
- Title(参考訳): SE(3) 等変拡大結合流
- Authors: Laurence I. Midgley and Vincent Stimper and Javier Antor\'an and Emile
Mathieu and Bernhard Sch\"olkopf and Jos\'e Miguel Hern\'andez-Lobato
- Abstract要約: 正規化フローの結合は、高速なサンプリングと密度評価を可能にする。
標準カップリングアーキテクチャは、原子のカルテシアン座標で動く供給フローを妨げている。
DW4粒子系とLJ13粒子系のボルツマン分布から,我々の流れをおよそサンプルとしてトレーニングできることが示されている。
- 参考スコア(独自算出の注目度): 16.65770540017618
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Coupling normalizing flows allow for fast sampling and density evaluation,
making them the tool of choice for probabilistic modeling of physical systems.
However, the standard coupling architecture precludes endowing flows that
operate on the Cartesian coordinates of atoms with the SE(3) and permutation
invariances of physical systems. This work proposes a coupling flow that
preserves SE(3) and permutation equivariance by performing coordinate splits
along additional augmented dimensions. At each layer, the flow maps atoms'
positions into learned SE(3) invariant bases, where we apply standard flow
transformations, such as monotonic rational-quadratic splines, before returning
to the original basis. Crucially, our flow preserves fast sampling and density
evaluation, and may be used to produce unbiased estimates of expectations with
respect to the target distribution via importance sampling. When trained on the
DW4, LJ13, and QM9-positional datasets, our flow is competitive with
equivariant continuous normalizing flows, while allowing sampling more than an
order of magnitude faster. Moreover, to the best of our knowledge, we are the
first to learn the full Boltzmann distribution of alanine dipeptide by only
modeling the Cartesian positions of its atoms. Lastly, we demonstrate that our
flow can be trained to approximately sample from the Boltzmann distribution of
the DW4 and LJ13 particle systems using only their energy functions.
- Abstract(参考訳): 結合正規化フローは高速サンプリングと密度評価を可能にし、物理システムの確率的モデリングに最適なツールとなる。
しかし、標準結合構造は、se(3)と物理系の置換不変性を持つ原子の直交座標上で作用する内転流を妨げている。
本研究は,SE(3)と置換等式を付加次元に沿って座標分割して保持する結合流を提案する。
各層において、フローは原子の位置を学習されたSE(3)不変基底にマッピングし、そこではモノトニックな有理クアドラティックスプラインのような標準フロー変換を適用し、元の基底に戻る。
重要な点として,我々のフローは高速サンプリングと密度評価を保ち,重要サンプリングによる目標分布に対する予測の偏りのない推定を行うのに有用である。
DW4, LJ13, QM9-ポジションデータセットでトレーニングすると, 流れは等変連続正規化フローと競合すると同時に, 1桁以上のサンプリングを高速に行うことができる。
さらに、我々の知る限りでは、我々は、その原子のカルテシアン位置のみをモデル化することによって、初めて、アラニンジペプチドのボルツマン分布を学習する。
最後に,DW4粒子系とLJ13粒子系のボルツマン分布から,エネルギー関数のみを用いて,我々の流れをおよそサンプルとしてトレーニングできることを実証した。
関連論文リスト
- Flow matching achieves almost minimax optimal convergence [50.38891696297888]
フローマッチング (FM) は, シミュレーションのない生成モデルとして注目されている。
本稿では,大試料径のFMの収束特性を$p$-Wasserstein 距離で論じる。
我々は、FMが1leq p leq 2$でほぼ最小の収束率を達成できることを確立し、FMが拡散モデルに匹敵する収束率に達するという最初の理論的証拠を示す。
論文 参考訳(メタデータ) (2024-05-31T14:54:51Z) - Convergence Analysis of Flow Matching in Latent Space with Transformers [7.069772598731282]
本稿では,ODEに基づく生成モデル,特にフローマッチングに関する理論的収束保証について述べる。
トレーニング済みのオートエンコーダネットワークを用いて、高次元の原入力を低次元の潜在空間にマッピングし、トランスフォーマーネットワークをトレーニングし、標準正規分布から目標潜在分布への変換速度場を予測する。
論文 参考訳(メタデータ) (2024-04-03T07:50:53Z) - Equivariant Flow Matching with Hybrid Probability Transport [69.11915545210393]
拡散モデル (DM) は, 特徴量の多いジオメトリの生成に有効であることを示した。
DMは通常、非効率なサンプリング速度を持つ不安定な確率力学に悩まされる。
等変モデリングと安定化確率力学の両方の利点を享受する幾何フローマッチングを導入する。
論文 参考訳(メタデータ) (2023-12-12T11:13:13Z) - Equivariant flow matching [0.9208007322096533]
等変連続正規化流(CNF)の新しい訓練目標である等変フローマッチングを導入する。
等変流マッチングは、標的エネルギーの物理対称性を利用して、同変CNFの効率的でシミュレーションなしな訓練を行う。
この結果から,同変フローマッチングの対象は,従来の手法に比べて,より短い積分経路,サンプリング効率の向上,スケーラビリティの向上を図っている。
論文 参考訳(メタデータ) (2023-06-26T19:40:10Z) - Delving into Discrete Normalizing Flows on SO(3) Manifold for
Probabilistic Rotation Modeling [30.09829541716024]
我々はSO(3)多様体上の新しい正規化フローを提案する。
回転正規化フローは, 条件付きタスクと条件付きタスクの両方において, ベースラインを著しく上回ることを示す。
論文 参考訳(メタデータ) (2023-04-08T06:52:02Z) - Third quantization of open quantum systems: new dissipative symmetries
and connections to phase-space and Keldysh field theory formulations [77.34726150561087]
3つの方法全てを明示的に接続する方法で第3量子化の手法を再構成する。
まず、我々の定式化は、すべての二次ボゾンあるいはフェルミオンリンドブラディアンに存在する基本散逸対称性を明らかにする。
ボソンに対して、ウィグナー関数と特徴関数は密度行列の「波動関数」と考えることができる。
論文 参考訳(メタデータ) (2023-02-27T18:56:40Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
正規化フローの微分同相性に基づいて、閉領域上の累積分布関数(CDF)を推定する。
一般的なフローアーキテクチャとUCIデータセットに関する実験は,従来の推定器と比較して,サンプル効率が著しく向上したことを示している。
論文 参考訳(メタデータ) (2022-02-23T06:11:49Z) - E(n) Equivariant Normalizing Flows for Molecule Generation in 3D [87.12477361140716]
本稿ではユークリッド対称性に同値な生成モデルを紹介する: E(n) 等変正規化フロー(E-NFs)
私たちの知る限りでは、これは3Dで分子を生成する可能性に基づく最初の深層生成モデルである。
論文 参考訳(メタデータ) (2021-05-19T09:28:54Z) - SurVAE Flows: Surjections to Bridge the Gap between VAEs and Flows [78.77808270452974]
SurVAE Flowsは、VAEと正規化フローを含む構成可能な変換のためのモジュラーフレームワークである。
提案手法は,SurVAE フローとして表現できることが示唆された。
論文 参考訳(メタデータ) (2020-07-06T13:13:22Z) - You say Normalizing Flows I see Bayesian Networks [11.23030807455021]
正規化フローは、予め定義された位相と各ノードでの学習可能な密度を持つベイズネットワークに還元されることを示す。
正規化フローにおける多重変換の積み重ねは独立性の仮定を緩和し、モデル分布を絡ませることを示す。
我々は,その深さに関わらず,アフィン正規化流れの不均一性を証明した。
論文 参考訳(メタデータ) (2020-06-01T11:54:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。