論文の概要: Performance Metric for Multiple Anomaly Score Distributions with Discrete Severity Levels
- arxiv url: http://arxiv.org/abs/2408.04817v1
- Date: Fri, 9 Aug 2024 02:17:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-12 16:48:31.551536
- Title: Performance Metric for Multiple Anomaly Score Distributions with Discrete Severity Levels
- Title(参考訳): 離散重みレベルを有する複数の異常スコア分布に対する性能指標
- Authors: Wonjun Yi, Yong-Hwa Park, Wonho Jung,
- Abstract要約: 本稿では, 受信機動作特性曲線(WS-AUROC)に基づいて, 異常スコアに基づいて重み付けされた領域の重み付け和を提案する。
また、分布の明確な分離を実現し、WS-AUROCおよびAUROCメトリクスのアブレーションモデルより優れる異常検出器を提案する。
- 参考スコア(独自算出の注目度): 4.66313002591741
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rise of smart factories has heightened the demand for automated maintenance, and normal-data-based anomaly detection has proved particularly effective in environments where anomaly data are scarce. This method, which does not require anomaly data during training, has prompted researchers to focus not only on detecting anomalies but also on classifying severity levels by using anomaly scores. However, the existing performance metrics, such as the area under the receiver operating characteristic curve (AUROC), do not effectively reflect the performance of models in classifying severity levels based on anomaly scores. To address this limitation, we propose the weighted sum of the area under the receiver operating characteristic curve (WS-AUROC), which combines AUROC with a penalty for severity level differences. We conducted various experiments using different penalty assignment methods: uniform penalty regardless of severity level differences, penalty based on severity level index differences, and penalty based on actual physical quantities that cause anomalies. The latter method was the most sensitive. Additionally, we propose an anomaly detector that achieves clear separation of distributions and outperforms the ablation models on the WS-AUROC and AUROC metrics.
- Abstract(参考訳): スマートファクトリの興隆により、自動メンテナンスの需要が高まり、異常データが不足している環境では、通常データに基づく異常検出が特に有効であることが証明された。
この方法では、トレーニング中に異常データを必要としないため、研究者は異常を検出するだけでなく、異常スコアを用いて重症度を分類することに注力している。
しかしながら、受信機動作特性曲線(AUROC)の下の領域のような既存の性能指標は、異常スコアに基づいて重度レベルを分類する際のモデルの性能を効果的に反映していない。
この制限に対処するために、AUROCと重度差のペナルティを組み合わせた受信機動作特性曲線(WS-AUROC)に基づく領域の重み付け和を提案する。
本研究は,重度の差にかかわらず均一な刑罰,重度の差に基づく刑罰,異常の原因となる実際の身体量に基づく刑罰など,様々なペナルティ付与法を用いて様々な実験を行った。
後者の方法は最も敏感であった。
さらに,分布の明確な分離を実現し,WS-AUROC および AUROC 測定値のアブレーションモデルより優れる異常検出器を提案する。
関連論文リスト
- Adaptive Deviation Learning for Visual Anomaly Detection with Data Contamination [20.4008901760593]
そこで本研究では,偏差学習を応用して,異常スコアをエンドツーエンドに計算する手法を提案する。
提案手法は競合する手法を超越し,データ汚染の存在下での安定性とロバスト性を示す。
論文 参考訳(メタデータ) (2024-11-14T16:10:15Z) - Unraveling the "Anomaly" in Time Series Anomaly Detection: A
Self-supervised Tri-domain Solution [89.16750999704969]
異常ラベルは時系列異常検出において従来の教師付きモデルを妨げる。
自己教師型学習のような様々なSOTA深層学習技術がこの問題に対処するために導入されている。
自己教師型3領域異常検出器(TriAD)を提案する。
論文 参考訳(メタデータ) (2023-11-19T05:37:18Z) - MSFlow: Multi-Scale Flow-based Framework for Unsupervised Anomaly
Detection [124.52227588930543]
教師なし異常検出(UAD)は多くの研究の関心を集め、幅広い応用を推進している。
不明瞭だが強力な統計モデルである正規化フローは、教師なしの方法で異常検出と局所化に適している。
非対称な並列フローと融合フローからなるMSFlowと呼ばれる新しいマルチスケールフローベースフレームワークを提案する。
我々のMSFlowは、検出AUORCスコアが99.7%、ローカライゼーションAUCROCスコアが98.8%、プロスコアが97.1%の新たな最先端技術を実現している。
論文 参考訳(メタデータ) (2023-08-29T13:38:35Z) - Adaptive Thresholding Heuristic for KPI Anomaly Detection [1.57731592348751]
時系列領域では、多くの異常検知器が探索されているが、ビジネス的な意味では、すべての異常検出器が興味のある異常であるわけではない。
本稿では,データ分布の局所特性に基づいて検出閾値を動的に調整し,時系列パターンの変化に適応する適応的閾値保持ヒューリスティック(ATH)を提案する。
実験結果から, ATHは効率が良く, ほぼリアルタイムで異常検出が可能であり, 予測器や異常検出器で柔軟であることがわかった。
論文 参考訳(メタデータ) (2023-08-21T06:45:28Z) - Anomaly Detection with Score Distribution Discrimination [4.468952886990851]
本稿では,スコア分布の観点から,異常スコア関数の最適化を提案する。
正常試料と異常試料のスコア分布の重なりを最小化するオーバーラップ損失と呼ばれる新しい損失関数を設計する。
論文 参考訳(メタデータ) (2023-06-26T03:32:57Z) - An Outlier Exposure Approach to Improve Visual Anomaly Detection
Performance for Mobile Robots [76.36017224414523]
移動ロボットの視覚異常検出システム構築の問題点を考察する。
標準異常検出モデルは、非異常データのみからなる大規模なデータセットを用いて訓練される。
本研究では,これらのデータを利用してリアルNVP異常検出モデルの性能向上を図る。
論文 参考訳(メタデータ) (2022-09-20T15:18:13Z) - Hierarchical Semi-Supervised Contrastive Learning for
Contamination-Resistant Anomaly Detection [81.07346419422605]
異常検出は、通常のデータ分布から逸脱したサンプルを特定することを目的としている。
コントラスト学習は、異常の効果的な識別を可能にする表現のサンプル化に成功している。
汚染耐性異常検出のための新しい階層型半教師付きコントラスト学習フレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-24T18:49:26Z) - SLA$^2$P: Self-supervised Anomaly Detection with Adversarial
Perturbation [77.71161225100927]
異常検出は、機械学習の基本的な問題であるが、難しい問題である。
本稿では,非教師付き異常検出のための新しい強力なフレームワークであるSLA$2$Pを提案する。
論文 参考訳(メタデータ) (2021-11-25T03:53:43Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
本稿では,弱い教師付き異常検出フレームワークを導入し,検出モデルを訓練する。
提案手法は,ラベル付き異常と事前確率を活用することにより,識別正規性を学習する。
我々のモデルはサンプル効率が高く頑健であり、クローズドセットとオープンセットの両方の設定において最先端の競合手法よりもはるかに優れている。
論文 参考訳(メタデータ) (2021-08-01T14:33:17Z) - Understanding the Effect of Bias in Deep Anomaly Detection [15.83398707988473]
異常検出はラベル付き異常データの不足のため、機械学習においてユニークな課題となる。
最近の研究は、追加のラベル付き異常サンプルによる深部異常検出モデルのトレーニングを増強することで、このような問題を緩和しようとするものである。
本稿では,異常検出に対するバイアス付き異常集合の効果を理解することを目的とする。
論文 参考訳(メタデータ) (2021-05-16T03:55:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。