論文の概要: Enhancing Agent Communication and Learning through Action and Language
- arxiv url: http://arxiv.org/abs/2308.10842v3
- Date: Wed, 27 Sep 2023 07:41:03 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-28 18:46:25.843235
- Title: Enhancing Agent Communication and Learning through Action and Language
- Title(参考訳): アクションと言語によるエージェントコミュニケーションと学習の促進
- Authors: Hugo Caselles-Dupr\'e, Olivier Sigaud, Mohamed Chetouani
- Abstract要約: 本稿では,教師と学習者の両方として機能するGCエージェントの新たなカテゴリを紹介する。
アクションベースのデモンストレーションと言語ベースの指示を活用することで、これらのエージェントは通信効率を向上させる。
- 参考スコア(独自算出の注目度): 8.715518445626826
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a novel category of GC-agents capable of functioning as both
teachers and learners. Leveraging action-based demonstrations and
language-based instructions, these agents enhance communication efficiency. We
investigate the incorporation of pedagogy and pragmatism, essential elements in
human communication and goal achievement, enhancing the agents' teaching and
learning capabilities. Furthermore, we explore the impact of combining
communication modes (action and language) on learning outcomes, highlighting
the benefits of a multi-modal approach.
- Abstract(参考訳): 教師と学習者の両方として機能するgcエージェントの新たなカテゴリを提案する。
アクションベースのデモンストレーションと言語ベースの命令を活用することで、これらのエージェントはコミュニケーション効率を高める。
教育学とプラグマティズム,人間のコミュニケーションと目標達成に不可欠な要素,エージェントの指導と学習能力の向上について検討した。
さらに,コミュニケーションモード(行動と言語)の組み合わせが学習結果に与える影響についても検討し,マルチモーダルアプローチのメリットを強調した。
関連論文リスト
- Prosody as a Teaching Signal for Agent Learning: Exploratory Studies and Algorithmic Implications [2.8243597585456017]
本稿では,人間教師からのエージェント学習を強化するための教示信号として,韻律の統合を提唱する。
その結果,明示的なフィードバックと組み合わせることで,韻律的特徴が強化学習効果を高めることが示唆された。
論文 参考訳(メタデータ) (2024-10-31T01:51:23Z) - Mutual Theory of Mind in Human-AI Collaboration: An Empirical Study with LLM-driven AI Agents in a Real-time Shared Workspace Task [56.92961847155029]
心の理論(ToM)は、他人を理解する上で重要な能力として、人間の協調とコミュニケーションに大きな影響を及ぼす。
Mutual Theory of Mind (MToM) は、ToM能力を持つAIエージェントが人間と協力するときに発生する。
エージェントのToM能力はチームのパフォーマンスに大きな影響を与えず,エージェントの人間的理解を高めていることがわかった。
論文 参考訳(メタデータ) (2024-09-13T13:19:48Z) - Verco: Learning Coordinated Verbal Communication for Multi-agent Reinforcement Learning [42.27106057372819]
本稿では,大規模言語モデルをエージェントに組み込むマルチエージェント強化学習アルゴリズムを提案する。
フレームワークにはメッセージモジュールとアクションモジュールがある。
オーバークッキングゲームで行った実験は,既存の手法の学習効率と性能を大幅に向上させることを示した。
論文 参考訳(メタデータ) (2024-04-27T05:10:33Z) - Improving Agent Interactions in Virtual Environments with Language
Models [0.9790236766474201]
本研究は、Minecraftデータセットにおける集合的なビルディング割り当てに焦点を当てる。
我々は,最先端手法によるタスク理解を強化するために,言語モデリングを採用している。
論文 参考訳(メタデータ) (2024-02-08T06:34:11Z) - Progressively Efficient Learning [58.6490456517954]
我々はCEIL(Communication-Efficient Interactive Learning)という新しい学習フレームワークを開発した。
CEILは、学習者と教師がより抽象的な意図を交換することで効率的にコミュニケーションする人間のようなパターンの出現につながる。
CEILで訓練されたエージェントは、新しいタスクを素早く習得し、非階層的で階層的な模倣学習を、絶対的な成功率で最大50%、20%上回った。
論文 参考訳(メタデータ) (2023-10-13T07:52:04Z) - Building Cooperative Embodied Agents Modularly with Large Language
Models [104.57849816689559]
本研究では, 分散制御, 生の知覚観察, コストのかかるコミュニケーション, 様々な実施環境下でインスタンス化された多目的タスクといった課題に対処する。
我々は,LLMの常識知識,推論能力,言語理解,テキスト生成能力を活用し,認知に触発されたモジュラーフレームワークにシームレスに組み込む。
C-WAH と TDW-MAT を用いた実験により, GPT-4 で駆動される CoELA が, 強い計画に基づく手法を超越し, 創発的な効果的なコミュニケーションを示すことを示した。
論文 参考訳(メタデータ) (2023-07-05T17:59:27Z) - Learning Multi-Agent Communication with Contrastive Learning [3.816854668079928]
本稿では,コミュニケーション的メッセージが環境状態の異なる不完全なビューと見なされる,別の視点を紹介する。
送信したメッセージと受信したメッセージの関係を調べることで,コントラスト学習を用いてコミュニケーションを学ぶことを提案する。
通信環境において,本手法は性能と学習速度の両面で,従来の手法よりも優れていた。
論文 参考訳(メタデータ) (2023-07-03T23:51:05Z) - Inferring the Goals of Communicating Agents from Actions and
Instructions [47.5816320484482]
本稿では,あるエージェント,プリンシパルが,その共有計画に関する自然言語指示を他のエージェント,アシスタントに伝達できるような協力チームのモデルを提案する。
3人目のオブザーバが、アクションや指示からマルチモーダルな逆計画を通じて、チームの目標を推測する方法を示します。
我々は,マルチエージェントグリッドワールドにおける人間の目標推定と比較し,モデルの推定が人間の判断と密接に相関していることを見出した。
論文 参考訳(メタデータ) (2023-06-28T13:43:46Z) - CAMEL: Communicative Agents for "Mind" Exploration of Large Language
Model Society [58.04479313658851]
本稿では,コミュニケーションエージェント間の自律的協調を支援するスケーラブルな手法の構築の可能性について検討する。
本稿では,ロールプレイングという新しいコミュニケーションエージェントフレームワークを提案する。
コントリビューションには、新しいコミュニケーティブエージェントフレームワークの導入、マルチエージェントシステムの協調行動や能力を研究するためのスケーラブルなアプローチの提供などが含まれます。
論文 参考訳(メタデータ) (2023-03-31T01:09:00Z) - Learning Emergent Discrete Message Communication for Cooperative
Reinforcement Learning [36.468498804251574]
離散メッセージ通信は連続メッセージ通信に匹敵する性能を有することを示す。
エージェントに離散的なメッセージを対話的に送信できるアプローチを提案します。
論文 参考訳(メタデータ) (2021-02-24T20:44:14Z) - Learning Structured Communication for Multi-agent Reinforcement Learning [104.64584573546524]
本研究では,マルチエージェント強化学習(MARL)環境下での大規模マルチエージェント通信機構について検討する。
本稿では、より柔軟で効率的な通信トポロジを用いて、LSC(Learning Structured Communication)と呼ばれる新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-02-11T07:19:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。