Label-based Graph Augmentation with Metapath for Graph Anomaly Detection
- URL: http://arxiv.org/abs/2308.10918v2
- Date: Fri, 12 Apr 2024 03:10:27 GMT
- Title: Label-based Graph Augmentation with Metapath for Graph Anomaly Detection
- Authors: Hwan Kim, Junghoon Kim, Byung Suk Lee, Sungsu Lim,
- Abstract summary: We present a new framework, Metapath-based Graph Anomaly Detection (MGAD), incorporating GCN layers in both the dual-encoders and decoders.
Through a comprehensive set of experiments conducted on seven real-world networks, this paper demonstrates the superiority of the MGAD method compared to state-of-the-art techniques.
- Score: 8.090325400557697
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph anomaly detection has attracted considerable attention from various domain ranging from network security to finance in recent years. Due to the fact that labeling is very costly, existing methods are predominately developed in an unsupervised manner. However, the detected anomalies may be found out uninteresting instances due to the absence of prior knowledge regarding the anomalies looking for. This issue may be solved by using few labeled anomalies as prior knowledge. In real-world scenarios, we can easily obtain few labeled anomalies. Efficiently leveraging labelled anomalies as prior knowledge is crucial for graph anomaly detection; however, this process remains challenging due to the inherently limited number of anomalies available. To address the problem, we propose a novel approach that leverages metapath to embed actual connectivity patterns between anomalous and normal nodes. To further efficiently exploit context information from metapath-based anomaly subgraph, we present a new framework, Metapath-based Graph Anomaly Detection (MGAD), incorporating GCN layers in both the dual-encoders and decoders to efficiently propagate context information between abnormal and normal nodes. Specifically, MGAD employs GNN-based graph autoencoder as its backbone network. Moreover, dual encoders capture the complex interactions and metapath-based context information between labeled and unlabeled nodes both globally and locally. Through a comprehensive set of experiments conducted on seven real-world networks, this paper demonstrates the superiority of the MGAD method compared to state-of-the-art techniques. The code is available at https://github.com/missinghwan/MGAD.
Related papers
- Alleviating Structural Distribution Shift in Graph Anomaly Detection [70.1022676681496]
Graph anomaly detection (GAD) is a challenging binary classification problem.
Gallon neural networks (GNNs) benefit the classification of normals from aggregating homophilous neighbors.
We propose a framework to mitigate the effect of heterophilous neighbors and make them invariant.
arXiv Detail & Related papers (2024-01-25T13:07:34Z) - Multitask Active Learning for Graph Anomaly Detection [48.690169078479116]
We propose a novel MultItask acTIve Graph Anomaly deTEction framework, namely MITIGATE.
By coupling node classification tasks, MITIGATE obtains the capability to detect out-of-distribution nodes without known anomalies.
Empirical studies on four datasets demonstrate that MITIGATE significantly outperforms the state-of-the-art methods for anomaly detection.
arXiv Detail & Related papers (2024-01-24T03:43:45Z) - ADA-GAD: Anomaly-Denoised Autoencoders for Graph Anomaly Detection [84.0718034981805]
We introduce a novel framework called Anomaly-Denoised Autoencoders for Graph Anomaly Detection (ADA-GAD)
In the first stage, we design a learning-free anomaly-denoised augmentation method to generate graphs with reduced anomaly levels.
In the next stage, the decoders are retrained for detection on the original graph.
arXiv Detail & Related papers (2023-12-22T09:02:01Z) - BOURNE: Bootstrapped Self-supervised Learning Framework for Unified
Graph Anomaly Detection [50.26074811655596]
We propose a novel unified graph anomaly detection framework based on bootstrapped self-supervised learning (named BOURNE)
By swapping the context embeddings between nodes and edges, we enable the mutual detection of node and edge anomalies.
BOURNE can eliminate the need for negative sampling, thereby enhancing its efficiency in handling large graphs.
arXiv Detail & Related papers (2023-07-28T00:44:57Z) - MetaGAD: Meta Representation Adaptation for Few-Shot Graph Anomaly Detection [31.218962952724624]
We study an important problem of few-shot graph anomaly detection.
We propose a novel meta-learning based framework, MetaGAD, that learns to adapt the knowledge from self-supervised learning to few-shot supervised learning.
In specific, we formulate the problem as a bi-level optimization, ensuring MetaGAD converging to minimize the validation loss.
arXiv Detail & Related papers (2023-05-18T03:04:51Z) - Cross-Domain Graph Anomaly Detection via Anomaly-aware Contrastive
Alignment [22.769474986808113]
Cross-domain graph anomaly detection (CD-GAD) describes the problem of detecting anomalous nodes in an unlabelled target graph.
We introduce a novel domain adaptation approach, namely Anomaly-aware Contrastive alignmenT (ACT) for GAD.
ACT achieves substantially improved detection performance over 10 state-of-the-art GAD methods.
arXiv Detail & Related papers (2022-12-02T11:21:48Z) - ARISE: Graph Anomaly Detection on Attributed Networks via Substructure
Awareness [70.60721571429784]
We propose a new graph anomaly detection framework on attributed networks via substructure awareness (ARISE)
ARISE focuses on the substructures in the graph to discern abnormalities.
Experiments show that ARISE greatly improves detection performance compared to state-of-the-art attributed networks anomaly detection (ANAD) algorithms.
arXiv Detail & Related papers (2022-11-28T12:17:40Z) - Deep Graph-level Anomaly Detection by Glocal Knowledge Distillation [61.39364567221311]
Graph-level anomaly detection (GAD) describes the problem of detecting graphs that are abnormal in their structure and/or the features of their nodes.
One of the challenges in GAD is to devise graph representations that enable the detection of both locally- and globally-anomalous graphs.
We introduce a novel deep anomaly detection approach for GAD that learns rich global and local normal pattern information by joint random distillation of graph and node representations.
arXiv Detail & Related papers (2021-12-19T05:04:53Z) - One-Class Graph Neural Networks for Anomaly Detection in Attributed
Networks [2.591494941326856]
One Class Graph Neural Network (OCGNN) is a one-class classification framework for graph anomaly detection.
OCGNN is designed to combine the powerful representation ability of Graph Neural Networks along with the classical one-class objective.
arXiv Detail & Related papers (2020-02-22T01:25:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.