論文の概要: Deep Learning Techniques in Extreme Weather Events: A Review
- arxiv url: http://arxiv.org/abs/2308.10995v1
- Date: Fri, 18 Aug 2023 08:15:21 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-23 14:16:49.408378
- Title: Deep Learning Techniques in Extreme Weather Events: A Review
- Title(参考訳): 極端気象イベントにおける深層学習技術:概観
- Authors: Shikha Verma, Kuldeep Srivastava, Akhilesh Tiwari, Shekhar Verma
- Abstract要約: 本総説は,その分野における最先端の深層学習の概要を概観することを目的としている。
天気予報の様々な側面において,ディープラーニングアーキテクチャの利用について検討する。
複雑なパターンや非線形関係をキャプチャする能力など、ディープラーニングの可能性を強調します。
- 参考スコア(独自算出の注目度): 7.298515369993722
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Extreme weather events pose significant challenges, thereby demanding
techniques for accurate analysis and precise forecasting to mitigate its
impact. In recent years, deep learning techniques have emerged as a promising
approach for weather forecasting and understanding the dynamics of extreme
weather events. This review aims to provide a comprehensive overview of the
state-of-the-art deep learning in the field. We explore the utilization of deep
learning architectures, across various aspects of weather prediction such as
thunderstorm, lightning, precipitation, drought, heatwave, cold waves and
tropical cyclones. We highlight the potential of deep learning, such as its
ability to capture complex patterns and non-linear relationships. Additionally,
we discuss the limitations of current approaches and highlight future
directions for advancements in the field of meteorology. The insights gained
from this systematic review are crucial for the scientific community to make
informed decisions and mitigate the impacts of extreme weather events.
- Abstract(参考訳): 極端な気象現象は重大な問題を引き起こし、その影響を緩和するために正確な分析と正確な予測のための技術を要求する。
近年,気象予報や極端な気象現象のダイナミクスの理解において,深層学習技術が有望なアプローチとして出現している。
本総説は,その分野における最先端の深層学習の概要を概観することを目的としている。
本研究では,雷雨,雷,降水,干ばつ,熱波,寒波,熱帯サイクロンなど,気象予報のさまざまな面において,ディープラーニングアーキテクチャの利用を検討する。
複雑なパターンや非線形関係をキャプチャする能力など、ディープラーニングの可能性を強調します。
さらに,現在のアプローチの限界を議論し,気象分野の進歩に向けた今後の方向性を強調する。
この体系的なレビューから得られた洞察は、科学的コミュニティが決定を下し、極端な気象事象の影響を軽減するために不可欠である。
関連論文リスト
- FengWu-W2S: A deep learning model for seamless weather-to-subseasonal forecast of global atmosphere [53.22497376154084]
本研究では,FengWuグローバル気象予報モデルに基づくFengWu-Weather to Subseasonal (FengWu-W2S)を提案する。
我々は,FengWu-W2Sが大気環境を3~6週間先まで確実に予測し,マデン・ジュリア振動 (MJO) や北大西洋振動 (NAO) などの地球表面温度, 降水量, 地磁気高度, 季節内信号の予測能力を向上させることを実証した。
日時から季節時の予測誤差成長に関するアブレーション実験
論文 参考訳(メタデータ) (2024-11-15T13:44:37Z) - WeatherGFM: Learning A Weather Generalist Foundation Model via In-context Learning [69.82211470647349]
第1次一般気象基礎モデル(WeatherGFM)を紹介する。
気象理解タスクの幅広い範囲を統一的な方法で解決する。
我々のモデルは、天気予報、超解像、天気画像翻訳、後処理など、最大10の気象理解タスクを効果的に処理できる。
論文 参考訳(メタデータ) (2024-11-08T09:14:19Z) - Advancing Meteorological Forecasting: AI-based Approach to Synoptic Weather Map Analysis [3.686808512438363]
本研究では,新しい事前処理手法と畳み込みオートエンコーダモデルを提案する。
このモデルでは、現在の大気条件にほぼ一致する歴史的シンフォティック気象図を認識できた。
論文 参考訳(メタデータ) (2024-11-08T07:46:50Z) - Evaluation of deep learning models for Australian climate extremes: prediction of streamflow and floods [0.17999333451993949]
近年、洪水のような気候の極端は、オーストラリアにとって重要な環境と経済の危険を生み出している。
ディープラーニングの手法は、短時間の地平線上で、小規模から中規模の極端な事象を予測することを約束している。
大規模な急激な洪水に対処するアンサンブルベースの機械学習アプローチを提案する。
論文 参考訳(メタデータ) (2024-07-20T23:45:04Z) - Comparing Data-Driven and Mechanistic Models for Predicting Phenology in
Deciduous Broadleaf Forests [47.285748922842444]
我々は、気象時系列から表現指標を予測するために、ディープニューラルネットワークを訓練する。
このアプローチは従来のプロセスベースのモデルよりも優れています。
論文 参考訳(メタデータ) (2024-01-08T15:29:23Z) - Foundation Models for Weather and Climate Data Understanding: A
Comprehensive Survey [39.08108001903514]
私たちは、気象や気候データのために特別に設計された最先端のAI方法論を、徹底的に、タイムリーに概説しています。
主な対象は、気象・気候データの種類、主モデル、モデルスコープと応用、気象・気候のデータセットの4つである。
論文 参考訳(メタデータ) (2023-12-05T01:10:54Z) - Improving extreme weather events detection with light-weight neural
networks [0.0]
気候データから熱帯低気圧と大気河川のセマンティックセグメンテーションを訓練した軽量なコンテキストガイド畳み込みニューラルネットワークアーキテクチャを改良した。
我々の主な焦点は熱帯のサイクロンであり、最も破壊的な気象現象であり、現在のモデルでは性能が限られている。
論文 参考訳(メタデータ) (2023-03-31T23:38:54Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
高空間分解能水深予測のための異なる深層学習モデルの比較を行った。
深層学習モデルはCADDIESセル-オートマタフラッドモデルによってシミュレーションされたデータを再現するために訓練される。
その結果,ディープラーニングモデルでは,他の手法に比べて誤差が低いことがわかった。
論文 参考訳(メタデータ) (2023-02-20T16:08:54Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
変形可能な畳み込みニューラルネットワーク(deCNN)に基づく教師あり機械学習手法の検討
今後1~15日にわたって北大西洋-欧州の気象条件を予測した。
より広い視野で見れば、通常の畳み込みニューラルネットワークよりも5~6日を超えるリードタイムでかなり優れた性能を発揮することが分かる。
論文 参考訳(メタデータ) (2022-02-10T11:37:00Z) - Deep Learning based Extreme Heatwave Forecast [8.975667614727648]
最先端のプラシム・プラネット・シミュレーターの気候モデルデータを用いて,大クラスのアンダーサンプリングと転送学習を含む畳み込みニューラルネットワークに基づく深層学習フレームワークが,極端な熱波の発生を予測する上で有意な性能を発揮することを示した。
論文 参考訳(メタデータ) (2021-03-17T16:10:06Z) - A Data Scientist's Guide to Streamflow Prediction [55.22219308265945]
我々は,水文降雨要素と流出モデルに着目し,洪水の予測と流れの予測に応用する。
このガイドは、データサイエンティストが問題や水文学的な概念、そしてその過程で現れる詳細を理解するのを助けることを目的としています。
論文 参考訳(メタデータ) (2020-06-05T08:04:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。