論文の概要: NLP-based detection of systematic anomalies among the narratives of consumer complaints
- arxiv url: http://arxiv.org/abs/2308.11138v3
- Date: Wed, 27 Mar 2024 00:29:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-28 23:02:36.349425
- Title: NLP-based detection of systematic anomalies among the narratives of consumer complaints
- Title(参考訳): 消費者苦情の物語におけるNLPによる系統的異常の検出
- Authors: Peiheng Gao, Ning Sun, Xuefeng Wang, Chen Yang, Ričardas Zitikis,
- Abstract要約: 我々は,NLPをベースとしたシステム的非商業的消費者苦情の検出手法を開発した。
本稿では, 消費者金融保護局の苦情談話を用いて, 全手続について解説する。
- 参考スコア(独自算出の注目度): 3.6592525663241466
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We develop an NLP-based procedure for detecting systematic nonmeritorious consumer complaints, simply called systematic anomalies, among complaint narratives. While classification algorithms are used to detect pronounced anomalies, in the case of smaller and frequent systematic anomalies, the algorithms may falter due to a variety of reasons, including technical ones as well as natural limitations of human analysts. Therefore, as the next step after classification, we convert the complaint narratives into quantitative data, which are then analyzed using an algorithm for detecting systematic anomalies. We illustrate the entire procedure using complaint narratives from the Consumer Complaint Database of the Consumer Financial Protection Bureau.
- Abstract(参考訳): そこで我々は,NLPをベースとした,系統的非商業的消費者苦情(単に系統的異常と呼ばれる)を検出する手法を開発した。
分類アルゴリズムは発音異常を検出するのに使用されるが、より小さく頻繁な体系的異常の場合、そのアルゴリズムは、技術的理由や人間のアナリストの自然な制限など、様々な理由により、混乱する可能性がある。
そこで, 分類後の次のステップとして, 苦情を定量的なデータに変換し, 系統的異常を検出するアルゴリズムを用いて分析する。
本稿では, 消費者金融保護局の消費者苦情データベース(Consumer Complaint Database)の苦情談話を用いて, 全手順について解説する。
関連論文リスト
- Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
本研究は,画像のマスキング領域にペンキを塗布することにより,汎用的な映像時間PAを生成する手法を提案する。
さらに,OCC設定下での現実世界の異常を検出するための単純な統合フレームワークを提案する。
提案手法は,OCC設定下での既存のPAs生成および再構築手法と同等に動作する。
論文 参考訳(メタデータ) (2023-11-27T13:14:06Z) - Interactive System-wise Anomaly Detection [66.3766756452743]
異常検出は様々なアプリケーションにおいて基本的な役割を果たす。
既存のメソッドでは、インスタンスがデータとして容易に観察できないシステムであるシナリオを扱うのが難しい。
システム埋め込みを学習するエンコーダデコーダモジュールを含むエンドツーエンドアプローチを開発する。
論文 参考訳(メタデータ) (2023-04-21T02:20:24Z) - From Explanation to Action: An End-to-End Human-in-the-loop Framework
for Anomaly Reasoning and Management [15.22568616519016]
ALARMは、異常採掘サイクルを包括的にサポートするエンドツーエンドフレームワークである。
異常な説明と、ヒューマン・イン・ザ・ループ・プロセスのための対話型GUIを提供する。
我々は、金融業界の詐欺アナリストによる一連のケーススタディを通じて、ALARMの有効性を実証する。
論文 参考訳(メタデータ) (2023-04-06T20:49:36Z) - Framing Algorithmic Recourse for Anomaly Detection [18.347886926848563]
我々は,タブラルデータ(CARAT)における異常に対する文脈保存型アルゴリズムレコースを提案する。
CARATはトランスフォーマーベースのエンコーダデコーダモデルを用いて、低い確率で特徴を見つけることで異常を説明する。
異常なインスタンス内の特徴の全体的コンテキストを使用して、強調された特徴を変更することによって、意味的に一貫性のある反事実が生成される。
論文 参考訳(メタデータ) (2022-06-29T03:30:51Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
我々は, 正規サンプルの分布を低次元多様体で支持する異常検出において, 特定のユースケースに焦点を当てた。
我々は、訓練中に識別情報を活用する自己指導型学習体制に適応するが、通常の例のサブ多様体に焦点をあてる。
製造領域における視覚異常検出のための挑戦的なベンチマークであるMVTec ADデータセットで、最先端の新たな結果を達成する。
論文 参考訳(メタデータ) (2022-06-23T14:16:30Z) - Abuse and Fraud Detection in Streaming Services Using Heuristic-Aware
Machine Learning [0.45880283710344055]
本研究は,ユーザのストリーミング動作をモデル化することで,ストリーミングサービスに対する不正・悪用検出フレームワークを提案する。
本研究では,半教師付きアプローチと,異常検出のための教師付きアプローチについて検討する。
私たちの知る限りでは、実世界のストリーミングサービスにおいて、不正行為の検出と不正検出に機械学習を使った最初の論文である。
論文 参考訳(メタデータ) (2022-03-04T03:57:58Z) - Information-Theoretic Bias Reduction via Causal View of Spurious
Correlation [71.9123886505321]
本稿では,スプリアス相関の因果的解釈による情報理論バイアス測定手法を提案する。
本稿では,バイアス正規化損失を含むアルゴリズムバイアスに対する新しいデバイアスフレームワークを提案する。
提案したバイアス測定とデバイアス法は、多様な現実シナリオで検証される。
論文 参考訳(メタデータ) (2022-01-10T01:19:31Z) - Machine Learning for Online Algorithm Selection under Censored Feedback [71.6879432974126]
オンラインアルゴリズム選択(OAS)では、アルゴリズム問題クラスのインスタンスがエージェントに次々に提示され、エージェントは、固定された候補アルゴリズムセットから、おそらく最高のアルゴリズムを迅速に選択する必要がある。
SAT(Satisfiability)のような決定問題に対して、品質は一般的にアルゴリズムのランタイムを指す。
本研究では,OASのマルチアームバンディットアルゴリズムを再検討し,この問題に対処する能力について議論する。
ランタイム指向の損失に適応し、時間的地平線に依存しない空間的・時間的複雑さを維持しながら、部分的に検閲されたデータを可能にする。
論文 参考訳(メタデータ) (2021-09-13T18:10:52Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
本稿では,弱い教師付き異常検出フレームワークを導入し,検出モデルを訓練する。
提案手法は,ラベル付き異常と事前確率を活用することにより,識別正規性を学習する。
我々のモデルはサンプル効率が高く頑健であり、クローズドセットとオープンセットの両方の設定において最先端の競合手法よりもはるかに優れている。
論文 参考訳(メタデータ) (2021-08-01T14:33:17Z) - A Survey on Anomaly Detection for Technical Systems using LSTM Networks [0.0]
異常は、意図されたシステムの動作から逸脱し、部分的または完全なシステム障害と同様に効率が低下する可能性がある。
本稿では,ディープニューラルネットワーク,特に長期記憶ネットワークを用いた最先端異常検出に関する調査を行う。
調査したアプローチは、アプリケーションシナリオ、データ、異常タイプ、およびさらなるメトリクスに基づいて評価される。
論文 参考訳(メタデータ) (2021-05-28T13:24:40Z) - Everyday algorithm auditing: Understanding the power of everyday users
in surfacing harmful algorithmic behaviors [8.360589318502816]
本稿では,日常的なアルゴリズム監査の概念について検討し,問題のあるマシンの動作を検出し,理解し,疑問を呈するプロセスを提案する。
日常のユーザは、より集中的に組織された監査形態による検知を不要にする問題のあるマシン行動に直面するのに強力である、と我々は主張する。
論文 参考訳(メタデータ) (2021-05-06T21:50:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。