On-Premise AIOps Infrastructure for a Software Editor SME: An Experience
Report
- URL: http://arxiv.org/abs/2308.11225v1
- Date: Tue, 22 Aug 2023 06:47:36 GMT
- Title: On-Premise AIOps Infrastructure for a Software Editor SME: An Experience
Report
- Authors: Anes Bendimerad, Youcef Remil, Romain Mathonat, Mehdi Kaytoue
- Abstract summary: The concept of AIOps has emerged to enhance predictive maintenance using Big Data and Machine Learning capabilities.
This paper investigates the feasibility of implementing on-premise AIOps solutions by leveraging open-source tools.
- Score: 0.3277163122167433
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Information Technology has become a critical component in various industries,
leading to an increased focus on software maintenance and monitoring. With the
complexities of modern software systems, traditional maintenance approaches
have become insufficient. The concept of AIOps has emerged to enhance
predictive maintenance using Big Data and Machine Learning capabilities.
However, exploiting AIOps requires addressing several challenges related to the
complexity of data and incident management. Commercial solutions exist, but
they may not be suitable for certain companies due to high costs, data
governance issues, and limitations in covering private software. This paper
investigates the feasibility of implementing on-premise AIOps solutions by
leveraging open-source tools. We introduce a comprehensive AIOps infrastructure
that we have successfully deployed in our company, and we provide the rationale
behind different choices that we made to build its various components.
Particularly, we provide insights into our approach and criteria for selecting
a data management system and we explain its integration. Our experience can be
beneficial for companies seeking to internally manage their software
maintenance processes with a modern AIOps approach.
Related papers
- On-Device LLMs for SMEs: Challenges and Opportunities [16.335180583743885]
This paper focuses on the infrastructure requirements for deploying Large Language Models (LLMs) on-device within the context of small and medium-sized enterprises (SMEs)
From the hardware viewpoint, we discuss the utilization of processing units like GPUs and TPUs, efficient memory and storage solutions, and strategies for effective deployment.
From the software perspective, we explore framework compatibility, operating system optimization, and the use of specialized libraries tailored for resource-constrained environments.
arXiv Detail & Related papers (2024-10-21T14:48:35Z) - A Survey of AIOps for Failure Management in the Era of Large Language Models [60.59720351854515]
This paper presents a comprehensive survey of AIOps technology for failure management in the LLM era.
It includes a detailed definition of AIOps tasks for failure management, the data sources for AIOps, and the LLM-based approaches adopted for AIOps.
arXiv Detail & Related papers (2024-06-17T05:13:24Z) - AIOps Solutions for Incident Management: Technical Guidelines and A Comprehensive Literature Review [0.29998889086656577]
This study proposes an AIOps terminology and taxonomy, establishing a structured incident management procedure and providing guidelines for constructing an AIOps framework.
The goal is to provide a comprehensive review of technical and research aspects in AIOps for incident management, aiming to structure knowledge, identify gaps, and establish a foundation for future developments in the field.
arXiv Detail & Related papers (2024-04-01T17:32:22Z) - Dealing with Data for RE: Mitigating Challenges while using NLP and
Generative AI [2.9189409618561966]
Book chapter explores the evolving landscape of Software Engineering in general, and Requirements Engineering (RE) in particular.
We discuss challenges that arise while integrating Natural Language Processing (NLP) and generative AI into enterprise-critical software systems.
Book provides practical insights, solutions, and examples to equip readers with the knowledge and tools necessary.
arXiv Detail & Related papers (2024-02-26T19:19:47Z) - The Security and Privacy of Mobile Edge Computing: An Artificial Intelligence Perspective [64.36680481458868]
Mobile Edge Computing (MEC) is a new computing paradigm that enables cloud computing and information technology (IT) services to be delivered at the network's edge.
This paper provides a survey of security and privacy in MEC from the perspective of Artificial Intelligence (AI)
We focus on new security and privacy issues, as well as potential solutions from the viewpoints of AI.
arXiv Detail & Related papers (2024-01-03T07:47:22Z) - Embedded Software Development with Digital Twins: Specific Requirements
for Small and Medium-Sized Enterprises [55.57032418885258]
Digital twins have the potential for cost-effective software development and maintenance strategies.
We interviewed SMEs about their current development processes.
First results show that real-time requirements prevent, to date, a Software-in-the-Loop development approach.
arXiv Detail & Related papers (2023-09-17T08:56:36Z) - AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities
and Challenges [60.56413461109281]
Artificial Intelligence for IT operations (AIOps) aims to combine the power of AI with the big data generated by IT Operations processes.
We discuss in depth the key types of data emitted by IT Operations activities, the scale and challenges in analyzing them, and where they can be helpful.
We categorize the key AIOps tasks as - incident detection, failure prediction, root cause analysis and automated actions.
arXiv Detail & Related papers (2023-04-10T15:38:12Z) - The Future of Consumer Edge-AI Computing [58.445652425379855]
Deep Learning has rapidly infiltrated the consumer end, mainly thanks to hardware acceleration across devices.
As we look towards the future, it is evident that isolated hardware will be insufficient.
We introduce a novel paradigm centered around EdgeAI-Hub devices, designed to reorganise and optimise compute resources and data access at the consumer edge.
arXiv Detail & Related papers (2022-10-19T12:41:47Z) - How Can Subgroup Discovery Help AIOps? [0.0]
We study how Subgroup Discovery can help AIOps.
This project involves both data mining researchers and practitioners from Infologic, a French software editor.
arXiv Detail & Related papers (2021-09-10T14:41:02Z) - Engineering an Intelligent Essay Scoring and Feedback System: An
Experience Report [1.5168188294440734]
We describe an exploratory system for assessing the quality of essays supplied by customers of a specialized recruitment support service.
The problem domain is challenging because the open-ended customer-supplied source text has considerable scope for ambiguity and error.
There is also a need to incorporate specialized business domain knowledge into the intelligent processing systems.
arXiv Detail & Related papers (2021-03-25T03:46:05Z) - Artificial Intelligence for IT Operations (AIOPS) Workshop White Paper [50.25428141435537]
Artificial Intelligence for IT Operations (AIOps) is an emerging interdisciplinary field arising in the intersection between machine learning, big data, streaming analytics, and the management of IT operations.
Main aim of the AIOPS workshop is to bring together researchers from both academia and industry to present their experiences, results, and work in progress in this field.
arXiv Detail & Related papers (2021-01-15T10:43:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.