論文の概要: Quantum-Inspired Machine Learning: a Survey
- arxiv url: http://arxiv.org/abs/2308.11269v1
- Date: Tue, 22 Aug 2023 08:29:09 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-23 18:29:04.378637
- Title: Quantum-Inspired Machine Learning: a Survey
- Title(参考訳): 量子インスパイアされた機械学習:調査
- Authors: Larry Huynh, Jin Hong, Ajmal Mian, Hajime Suzuki, Yanqiu Wu, Seyit
Camtepe
- Abstract要約: 量子インスパイアされた機械学習(QiML)は急成長する分野であり、研究者から世界的な注目を集めている。
本調査では,テンソルネットワークシミュレーションや復号化アルゴリズムなど,QiMLのさまざまな研究領域について調査する。
QiMLが進化を続けるにつれて、量子力学、量子コンピューティング、そして古典的な機械学習から引き出された、数多くの将来の発展が予想される。
- 参考スコア(独自算出の注目度): 32.913044758923455
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum-inspired Machine Learning (QiML) is a burgeoning field, receiving
global attention from researchers for its potential to leverage principles of
quantum mechanics within classical computational frameworks. However, current
review literature often presents a superficial exploration of QiML, focusing
instead on the broader Quantum Machine Learning (QML) field. In response to
this gap, this survey provides an integrated and comprehensive examination of
QiML, exploring QiML's diverse research domains including tensor network
simulations, dequantized algorithms, and others, showcasing recent
advancements, practical applications, and illuminating potential future
research avenues. Further, a concrete definition of QiML is established by
analyzing various prior interpretations of the term and their inherent
ambiguities. As QiML continues to evolve, we anticipate a wealth of future
developments drawing from quantum mechanics, quantum computing, and classical
machine learning, enriching the field further. This survey serves as a guide
for researchers and practitioners alike, providing a holistic understanding of
QiML's current landscape and future directions.
- Abstract(参考訳): 量子インスパイアされた機械学習(QiML)は、古典的な計算フレームワークにおける量子力学の原理を活用する可能性について、研究者から世界的な注目を集めている。
しかしながら、現在のレビュー文献はQiMLを表面的に探究し、より広範な量子機械学習(QML)分野に焦点を当てていることが多い。
このギャップに対応するために、この調査は、QiMLの様々な研究領域、例えばテンソルネットワークシミュレーション、量子化アルゴリズム、その他を総合的に調査し、最近の進歩、実践的応用、将来的な研究の道を示す。
さらに、QiMLの具体的定義は、この用語の様々な先行解釈とその固有の曖昧さを解析することによって確立される。
QiMLが進化を続けるにつれて、量子力学、量子コンピューティング、そして古典的な機械学習から引き出された将来的な発展が期待でき、この分野をさらに豊かにする。
この調査は研究者や実践者のガイドとなり、qimlの現在の状況と今後の方向性を総合的に理解する。
関連論文リスト
- A Survey on Quantum Machine Learning: Current Trends, Challenges, Opportunities, and the Road Ahead [5.629434388963902]
量子コンピューティング(QC)は、古典的な計算に比べて複雑な問題を解く効率を改善すると主張している。
QCが機械学習(ML)に統合されると、量子機械学習(QML)システムを生成する。
本稿では,QCの基本概念と,その古典コンピューティングに対する顕著な優位性について,より深く理解することを目的とする。
論文 参考訳(メタデータ) (2023-10-16T11:52:54Z) - Implementing Quantum Generative Adversarial Network (qGAN) and QCBM in
Finance [0.0]
量子コンピュータは今日、薬物発見、物質と分子モデリング、ファイナンスで使われている。
ファイナンスにおける量子機械学習(QML)の適用について、今後の活発な研究分野について論じる。
論文 参考訳(メタデータ) (2023-08-15T14:21:16Z) - Towards Quantum Federated Learning [80.1976558772771]
量子フェデレートラーニング(Quantum Federated Learning)は、学習プロセスにおけるプライバシ、セキュリティ、効率性の向上を目的とする。
我々は、QFLの原則、技術、および新しい応用について、包括的に理解することを目指している。
QFLの分野が進むにつれ、様々な産業でさらなるブレークスルーや応用が期待できる。
論文 参考訳(メタデータ) (2023-06-16T15:40:21Z) - Challenges and Opportunities in Quantum Machine Learning [2.5671549335906367]
量子機械学習(QML)は、特に量子データに対して、データ分析を加速する可能性がある。
ここでは、QMLの現在の方法と応用について概観する。
量子ニューラルネットワークと量子ディープラーニングに焦点をあてて、量子と古典的な機械学習の違いを強調します。
論文 参考訳(メタデータ) (2023-03-16T17:10:39Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
古典的な機械学習アプローチが量子コンピュータの設備改善にどのように役立つかを示す。
量子アルゴリズムと量子コンピュータは、古典的な機械学習タスクを解くのにどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2023-01-04T23:37:45Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
量子生成学習モデル(QGLM)は、古典的な学習モデルを上回る可能性がある。
機械学習の観点からQGLMの現状を概観する。
従来の機械学習タスクと量子物理学の両方におけるQGLMの潜在的な応用について論じる。
論文 参考訳(メタデータ) (2022-06-07T07:32:57Z) - Theory of Quantum Generative Learning Models with Maximum Mean
Discrepancy [67.02951777522547]
量子回路ボルンマシン(QCBM)と量子生成逆ネットワーク(QGAN)の学習可能性について検討する。
まず、QCBMの一般化能力を解析し、量子デバイスがターゲット分布に直接アクセスできる際の優位性を同定する。
次に、QGANの一般化誤差境界が、採用されるAnsatz、クォーディットの数、入力状態に依存することを示す。
論文 参考訳(メタデータ) (2022-05-10T08:05:59Z) - Modern applications of machine learning in quantum sciences [51.09906911582811]
本稿では、教師なし、教師なし、強化学習アルゴリズムにおけるディープラーニングとカーネル手法の使用について述べる。
我々は、微分可能プログラミング、生成モデル、機械学習に対する統計的アプローチ、量子機械学習など、より専門的なトピックについて議論する。
論文 参考訳(メタデータ) (2022-04-08T17:48:59Z) - Simulating Quantum Materials with Digital Quantum Computers [55.41644538483948]
デジタル量子コンピュータ(DQC)は、古典的コンピュータでは引き起こせない量子シミュレーションを効率的に行うことができる。
このレビューの目的は、物理量子優位性を達成するために行われた進歩の要約を提供することである。
論文 参考訳(メタデータ) (2021-01-21T20:10:38Z) - Classification with Quantum Machine Learning: A Survey [17.55390082094971]
我々は古典的機械学習(ML)と量子情報処理(QIP)を組み合わせることで、量子世界における量子機械学習(QML)と呼ばれる新しい分野を構築する。
本稿では,量子機械学習(QML)の最先端技術に関する包括的調査を提示し,要約する。
論文 参考訳(メタデータ) (2020-06-22T14:05:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。