BELB: a Biomedical Entity Linking Benchmark
- URL: http://arxiv.org/abs/2308.11537v1
- Date: Tue, 22 Aug 2023 16:05:18 GMT
- Title: BELB: a Biomedical Entity Linking Benchmark
- Authors: Samuele Garda, Leon Weber-Genzel, Robert Martin, Ulf Leser
- Abstract summary: We review recent work in the field and find that the task is absent from existing benchmarks for biomedical text mining.
We develop BELB, a Biomedical Entity Linking Benchmark, providing access in a unified format to 11 corpora linked to 7 knowledge bases.
Using BELB we perform an extensive evaluation of six rule-based entity-specific systems and three recent neural approaches leveraging pre-trained language models.
- Score: 3.9648178546218817
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Biomedical entity linking (BEL) is the task of grounding entity mentions to a
knowledge base. It plays a vital role in information extraction pipelines for
the life sciences literature. We review recent work in the field and find that,
as the task is absent from existing benchmarks for biomedical text mining,
different studies adopt different experimental setups making comparisons based
on published numbers problematic. Furthermore, neural systems are tested
primarily on instances linked to the broad coverage knowledge base UMLS,
leaving their performance to more specialized ones, e.g. genes or variants,
understudied. We therefore developed BELB, a Biomedical Entity Linking
Benchmark, providing access in a unified format to 11 corpora linked to 7
knowledge bases and spanning six entity types: gene, disease, chemical,
species, cell line and variant. BELB greatly reduces preprocessing overhead in
testing BEL systems on multiple corpora offering a standardized testbed for
reproducible experiments. Using BELB we perform an extensive evaluation of six
rule-based entity-specific systems and three recent neural approaches
leveraging pre-trained language models. Our results reveal a mixed picture
showing that neural approaches fail to perform consistently across entity
types, highlighting the need of further studies towards entity-agnostic models.
Related papers
- Augmenting Biomedical Named Entity Recognition with General-domain Resources [47.24727904076347]
Training a neural network-based biomedical named entity recognition (BioNER) model usually requires extensive and costly human annotations.
We propose GERBERA, a simple-yet-effective method that utilized a general-domain NER dataset for training.
We systematically evaluated GERBERA on five datasets of eight entity types, collectively consisting of 81,410 instances.
arXiv Detail & Related papers (2024-06-15T15:28:02Z) - Biomedical Entity Linking as Multiple Choice Question Answering [48.74212158495695]
We present BioELQA, a novel model that treats Biomedical Entity Linking as Multiple Choice Question Answering.
We first obtains candidate entities with a fast retriever, jointly presents the mention and candidate entities to a generator, and then outputs the predicted symbol associated with its chosen entity.
To improve generalization for long-tailed entities, we retrieve similar labeled training instances as clues and the input with retrieved instances for the generator.
arXiv Detail & Related papers (2024-02-23T08:40:38Z) - Improving Medical Reasoning through Retrieval and Self-Reflection with Retrieval-Augmented Large Language Models [18.984165679347026]
Self-BioRAG is a framework reliable for biomedical text that specializes in generating explanations, retrieving domain-specific documents, and self-reflecting generated responses.
We utilize 84k filtered biomedical instruction sets to train Self-BioRAG that can assess its generated explanations with customized reflective tokens.
arXiv Detail & Related papers (2024-01-27T02:29:42Z) - Diversifying Knowledge Enhancement of Biomedical Language Models using
Adapter Modules and Knowledge Graphs [54.223394825528665]
We develop an approach that uses lightweight adapter modules to inject structured biomedical knowledge into pre-trained language models.
We use two large KGs, the biomedical knowledge system UMLS and the novel biochemical OntoChem, with two prominent biomedical PLMs, PubMedBERT and BioLinkBERT.
We show that our methodology leads to performance improvements in several instances while keeping requirements in computing power low.
arXiv Detail & Related papers (2023-12-21T14:26:57Z) - Improving Biomedical Entity Linking with Retrieval-enhanced Learning [53.24726622142558]
$k$NN-BioEL provides a BioEL model with the ability to reference similar instances from the entire training corpus as clues for prediction.
We show that $k$NN-BioEL outperforms state-of-the-art baselines on several datasets.
arXiv Detail & Related papers (2023-12-15T14:04:23Z) - BiomedGPT: A Generalist Vision-Language Foundation Model for Diverse Biomedical Tasks [68.39821375903591]
Generalist AI holds the potential to address limitations due to its versatility in interpreting different data types.
Here, we propose BiomedGPT, the first open-source and lightweight vision-language foundation model.
arXiv Detail & Related papers (2023-05-26T17:14:43Z) - BioRED: A Comprehensive Biomedical Relation Extraction Dataset [6.915371362219944]
We present BioRED, a first-of-its-kind biomedical RE corpus with multiple entity types and relation pairs.
We label each relation as describing either a novel finding or previously known background knowledge, enabling automated algorithms to differentiate between novel and background information.
Our results show that while existing approaches can reach high performance on the NER task, there is much room for improvement for the RE task.
arXiv Detail & Related papers (2022-04-08T19:23:49Z) - A Lightweight Neural Model for Biomedical Entity Linking [1.8047694351309205]
We propose a lightweight neural method for biomedical entity linking.
Our method uses a simple alignment layer with attention mechanisms to capture the variations between mention and entity names.
Our model is competitive with previous work on standard evaluation benchmarks.
arXiv Detail & Related papers (2020-12-16T10:34:37Z) - BioALBERT: A Simple and Effective Pre-trained Language Model for
Biomedical Named Entity Recognition [9.05154470433578]
Existing BioNER approaches often neglect these issues and directly adopt the state-of-the-art (SOTA) models.
We propose biomedical ALBERT, an effective domain-specific language model trained on large-scale biomedical corpora.
arXiv Detail & Related papers (2020-09-19T12:58:47Z) - Domain-Specific Language Model Pretraining for Biomedical Natural
Language Processing [73.37262264915739]
We show that for domains with abundant unlabeled text, such as biomedicine, pretraining language models from scratch results in substantial gains.
Our experiments show that domain-specific pretraining serves as a solid foundation for a wide range of biomedical NLP tasks.
arXiv Detail & Related papers (2020-07-31T00:04:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.