論文の概要: Accel-GCN: High-Performance GPU Accelerator Design for Graph Convolution
Networks
- arxiv url: http://arxiv.org/abs/2308.11825v1
- Date: Tue, 22 Aug 2023 23:12:17 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-24 16:27:34.571429
- Title: Accel-GCN: High-Performance GPU Accelerator Design for Graph Convolution
Networks
- Title(参考訳): Accel-GCN:グラフ畳み込みネットワークのための高性能GPUアクセラレータ設計
- Authors: Xi Xie, Hongwu Peng, Amit Hasan, Shaoyi Huang, Jiahui Zhao, Haowen
Fang, Wei Zhang, Tong Geng, Omer Khan, and Caiwen Ding
- Abstract要約: グラフ畳み込みネットワーク(GCN)は、様々な領域にわたるグラフデータから潜伏情報を抽出する上で重要である。
本稿では,GCNのためのGPUアクセラレータアーキテクチャであるAccel-GCNを紹介する。
18のベンチマークグラフに対するAccel-GCNの評価では、cuSPARSE、GNNAdvisor、Graph-BLASTをそれぞれ1.17倍、1.86倍、2.94倍で上回っている。
- 参考スコア(独自算出の注目度): 12.181052673940465
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Convolutional Networks (GCNs) are pivotal in extracting latent
information from graph data across various domains, yet their acceleration on
mainstream GPUs is challenged by workload imbalance and memory access
irregularity. To address these challenges, we present Accel-GCN, a GPU
accelerator architecture for GCNs. The design of Accel-GCN encompasses: (i) a
lightweight degree sorting stage to group nodes with similar degree; (ii) a
block-level partition strategy that dynamically adjusts warp workload sizes,
enhancing shared memory locality and workload balance, and reducing metadata
overhead compared to designs like GNNAdvisor; (iii) a combined warp strategy
that improves memory coalescing and computational parallelism in the column
dimension of dense matrices.
Utilizing these principles, we formulated a kernel for sparse matrix
multiplication (SpMM) in GCNs that employs block-level partitioning and
combined warp strategy. This approach augments performance and multi-level
memory efficiency and optimizes memory bandwidth by exploiting memory
coalescing and alignment. Evaluation of Accel-GCN across 18 benchmark graphs
reveals that it outperforms cuSPARSE, GNNAdvisor, and graph-BLAST by factors of
1.17 times, 1.86 times, and 2.94 times respectively. The results underscore
Accel-GCN as an effective solution for enhancing GCN computational efficiency.
- Abstract(参考訳): グラフ畳み込みネットワーク(graph convolutional network, gcns)は、さまざまなドメインにわたるグラフデータから潜在情報を抽出する上で重要な役割を担っている。
これらの課題に対処するため,GCN用のGPUアクセラレータアーキテクチャであるAccel-GCNを提案する。
Accel-GCNの設計は以下のとおりである。
(i)類似の程度のグループノードに対する軽量次数分類段階
(ii) ワープのワークロードサイズを動的に調整し、共有メモリのローカリティとワークロードのバランスを改善し、GNNAdvisorのような設計と比較してメタデータのオーバーヘッドを減らすブロックレベルのパーティション戦略。
(iii)密行列の柱次元におけるメモリ結合と計算並列性を改善する複合ワープ戦略。
これらの原理を用いて,ブロックレベルの分割とワープ戦略を組み合わせたGCNにおけるスパース行列乗法(SpMM)のカーネルを定式化した。
このアプローチは性能とマルチレベルメモリ効率を向上し、メモリの結合とアライメントを利用してメモリ帯域幅を最適化する。
18のベンチマークグラフに対するAccel-GCNの評価では、cuSPARSE、GNNAdvisor、Graph-BLASTをそれぞれ1.17倍、1.86倍、2.94倍で上回っている。
その結果,GCN計算効率を向上させる有効なソリューションとして,Accel-GCNが評価された。
関連論文リスト
- Rethinking and Accelerating Graph Condensation: A Training-Free Approach with Class Partition [56.26113670151363]
グラフ凝縮(Graph condensation)は、大きなグラフを小さいが情報的な凝縮グラフに置き換えるための、データ中心のソリューションである。
既存のGCメソッドは複雑な最適化プロセスに悩まされており、過剰な計算資源を必要とする。
我々は、CGC(Class-partitioned Graph Condensation)と呼ばれるトレーニング不要なGCフレームワークを提案する。
CGCはより効率的な凝縮プロセスで最先端の性能を達成する。
論文 参考訳(メタデータ) (2024-05-22T14:57:09Z) - Cached Operator Reordering: A Unified View for Fast GNN Training [24.917363701638607]
グラフニューラルネットワーク(GNN)は、構造化グラフデータを扱う強力なツールであり、ノード分類、グラフ分類、クラスタリングといったタスクに対処する。
しかし、GNN計算のスパース性は、従来のディープニューラルネットワークと比較してパフォーマンス最適化に新たな課題をもたらす。
GNN計算,I/O,メモリの統一的なビューを提供することで,これらの課題に対処する。
論文 参考訳(メタデータ) (2023-08-23T12:27:55Z) - GCoD: Graph Convolutional Network Acceleration via Dedicated Algorithm
and Accelerator Co-Design [27.311994997480745]
グラフ畳み込みネットワーク(GCN)が最先端のグラフ学習モデルとして登場した。
大きなグラフデータセット上でGCNを推論することは、非常に難しい。
本稿では、前述のGCNの不規則性を大幅に軽減できるGCNアルゴリズムとGCoDと呼ばれる加速器協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2021-12-22T00:30:50Z) - SPA-GCN: Efficient and Flexible GCN Accelerator with an Application for
Graph Similarity Computation [7.54579279348595]
本稿では,グラフ上のグラフ畳み込みネットワーク(GCN)を高速化するための,SPA-GCNと呼ばれる柔軟なアーキテクチャを提案する。
SPA-GCNはマルチコアCPU実装やGPU実装と比較して高速に動作可能であることを示す。
論文 参考訳(メタデータ) (2021-11-10T20:47:57Z) - GNNIE: GNN Inference Engine with Load-balancing and Graph-Specific
Caching [2.654276707313136]
GNNIEは、幅広いグラフニューラルネットワーク(GNN)を実行するために設計されたアクセラレータである。
i)ノード特徴オペランドをブロックに分割し、 (ii) 再注文と再配布を行い、 (iii) 処理要素間の通信オーバーヘッドの少ない柔軟なMACアーキテクチャを使用する。
GNNIEは、CPU上の8890倍、グラフアテンションネットワーク(GAT)、グラフ畳み込みネットワーク(GCN)、GraphSAGE、GINConv、DiffPool上の複数のデータセット上のGPU上の295倍の平均スピードアップを達成する。
論文 参考訳(メタデータ) (2021-05-21T20:07:14Z) - DistGNN: Scalable Distributed Training for Large-Scale Graph Neural
Networks [58.48833325238537]
大規模グラフの構造を学ぶためにGNN(Graph Neural Networks)のフルバッチトレーニングは、実現可能な数百の計算ノードにスケールする必要がある重要な問題です。
本稿では,CPUクラスタ上でのフルバッチトレーニングのためのDGL(Deep Graph Library)を最適化したGNNについて述べる。
4つの一般的なGNNベンチマークデータセットの結果は、1つのCPUソケットを使用して最大3.7倍のスピードアップ、128のCPUソケットを使用して最大97倍のスピードアップを示す。
論文 参考訳(メタデータ) (2021-04-14T08:46:35Z) - Towards Efficient Graph Convolutional Networks for Point Cloud Handling [181.59146413326056]
ポイントクラウド上で学習するためのグラフ畳み込みネットワーク(GCN)の計算効率の向上を目指します。
一連の実験により、最適化されたネットワークは計算複雑性を減らし、メモリ消費を減らし、推論速度を加速した。
論文 参考訳(メタデータ) (2021-04-12T17:59:16Z) - Bi-GCN: Binary Graph Convolutional Network [57.733849700089955]
ネットワークパラメータと入力ノードの特徴を二項化するバイナリグラフ畳み込みネットワーク(Bi-GCN)を提案する。
我々のBi-GCNは、ネットワークパラメータと入力データの両方で平均30倍のメモリ消費を削減でき、推論速度を平均47倍に加速できる。
論文 参考訳(メタデータ) (2020-10-15T07:26:23Z) - Graph Highway Networks [77.38665506495553]
グラフ畳み込みネットワーク(GCN)は、グラフ表現の有効性と効率性から、グラフ表現の学習に広く利用されている。
彼らは、多くの層が積み重ねられたとき、学習された表現が類似したベクトルに収束するという悪名高い過度に滑らかな問題に悩まされる。
本稿では,GCN学習プロセスにおける均一性と不均一性との間のトレードオフのバランスをとるため,ゲーティングユニットを利用したグラフハイウェイネットワークを提案する。
論文 参考訳(メタデータ) (2020-04-09T16:26:43Z) - L$^2$-GCN: Layer-Wise and Learned Efficient Training of Graph
Convolutional Networks [118.37805042816784]
グラフ畳み込みネットワーク(GCN)は、多くのアプリケーションで人気が高まっているが、大きなグラフデータセットをトレーニングするのは依然として難しい。
本稿では,GCN (L-GCN) のための新しいレイヤワイドトレーニングフレームワークを提案する。
実験の結果、L-GCNは少なくとも1桁の精度で最先端よりも高速であり、メモリ使用量はデータセットのサイズに依存しないことがわかった。
論文 参考訳(メタデータ) (2020-03-30T16:37:56Z) - GraphACT: Accelerating GCN Training on CPU-FPGA Heterogeneous Platforms [1.2183405753834562]
グラフ畳み込みネットワーク(GCN)は、グラフ上での表現学習のための最先端のディープラーニングモデルとして登場した。
実質的かつ不規則なデータ通信のため、GCNの訓練を加速することは困難である。
我々はCPU-FPGAヘテロジニアスシステム上でGCNをトレーニングするための新しいアクセラレータを設計する。
論文 参考訳(メタデータ) (2019-12-31T21:19:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。